МИНИСТЕРСТВО СТРОИТЕЛЬСТВА И ЖИЛИЩНО-КОММУНАЛЬНОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

СВОД ПРАВИЛ

СП 263.1325800.2016

ПРИСПОСОБЛЕНИЕ МЕТРОПОЛИТЕНОВ ПОД ЗАЩИТНЫЕ СООРУЖЕНИЯ ГРАЖДАНСКОЙ ОБОРОНЫ

Общие правила проектирования

Издание официальное

Предисловие

Сведения о своде правил

- 1 ИСПОЛНИТЕЛИ ФГБУ ВНИИ ГОЧС (ФЦ), ФГБУ ВНИИПО МЧС РФ, ОАО «Метрогипротранс», 26 ЦНИИ филиал ОАО «31 ГПИСС», АО «Мосинжпроект»
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»
- 3 ПОДГОТОВЛЕН к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)
- 4 УТВЕРЖДЕН Приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 16 декабря 2016 г. № 966/пр и введен в действие с 17 июня 2017 г.
- 5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)
 - 6 ВВЕДЕН ВПЕРВЫЕ

В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте разработчика (Минстрой России) в сети Интернет

[©] Минстрой России, 2017

[©] Стандартинформ, 2017

Содержание

1	Область применения	1
2	Нормативные ссылки	. 1
3	Термины, определения и сокращения	. 2
4	Общие положения	. 4
	4.1 Приспособление метрополитена под укрытия гражданской обороны	
	4.2 Приспособление метрополитена под противорадиационные укрытия гражданской обороны.	
_	4.3 Приспособление метрополитена под убежища гражданской обороны	
	Расчет численности укрываемого населения	
6	Объемно-планировочные решения	
	6.1 Основные положения	
7	6.2 Объемно-планировочные решения убежищ	
1	Строительные конструкции	
	7.1 Основные положения	
	7.3 Конструктивные решения	
8	Оценка несущей способности сооружений	
	Оценка водопритоков при повреждении конструкций	
	Воздухоснабжение	
	Водоснабжение, водоотвод, канализация	
•	11.1 Водоснабжение	
	11.2 Водоотвод	
	11.3 Канализация	
	Электроснабжение	
	Связь	
	Управление, автоматизация	
15	Пожарная безопасность	
	15.1 Общие положения	. 21
	15.2 Противопожарные требования к объемно-планировочным решениям	21
	и ограничению распространения пожара в пожарном отсеке, сооружении	21
	15.4 Требования к системам электроснабжения	
	15.5 Требования к помещениям с герметизированными аккумуляторами	. 24
	15.6 Требования к системе вентиляции	
	15.7 Требования к эвакуационным и аварийным выходам, эвакуационным путям	
	15.8 Системы противопожарной защиты ЗС	. 21
	и управления эвакуацией людей при пожаре	. 27
	15.8.2 Требования к автоматическим системам пожарной сигнализации	. 27
	15.8.3 Требования к установкам пожаротушения	. 27
	15.8.4 Перечень помещений, подлежащих оборудованию автоматическими	00
	установками пожаротушения и автоматическими установками пожарной сигнализации	
	Санитарный пропускник	
17	Дизельная электростанция	
	17.1 Объемно-планировочные решения	
	17.3 Тепломеханическая часть	
	17.4 Компрессорная установка	
	17.5 Водоснабжение, водоотвод, канализация	. 35
	17.6 Электроснабжение	. 36

СП 263.1325800.2016

18 Фильтровентиляционная установка	38
19 Командный пункт метрополитена. Основные положения	39
Приложение А (справочное) Примерная схема воздухоснабжения УАЖ	42
Приложение Б (справочное) Дополнительные виды оперативно-технологических связей	44
Приложение В (справочное) Методика испытаний герметичности отсека линии метрополитена	46
Приложение Г (справочное) Минимальные расстояния между кабельными	
потоками и ограждающими конструкциями в кабельных сооружениях	59
Библиография	60

Введение

Настоящий свод правил составлен с целью повышения уровня безопасности людей в защитных сооружениях и сохранности материальных ценностей в соответствии с Федеральным законом от 12 февраля 1998 г. № 28-ФЗ «О гражданской обороне» [2], Федеральным законом от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений» [3] и Постановлением Правительства Российской Федерации от 29 ноября 1999 г. № 1309 «О порядке создания убежищ и иных объектов гражданской обороны» [4], повышения уровня гармонизации нормативных требований с европейскими и международными нормативными документами, применения единых методов определения эксплуатационных характеристик и методов оценки.

Свод правил «Приспособление метрополитенов под защитные сооружения гражданской обороны. Общие правила проектирования» разработан ФГБУ ВНИИ ГОЧС (ФЦ) (руководитель работы — д-р техн. наук, проф. Г.П. Тонких, канд. техн. наук И.В. Сосунов, Н.Н. Посохов), 26 ЦНИИ филиал ОАО «31 ГПИСС» (д-р техн. наук С.Н. Латушкин), ФГБУ ВНИИПО МЧС России (д-р техн. наук А.П. Чибисов, канд. техн. наук Е.А. Соина, ОАО «Метрогипротранс» (П.Д. Павлов), АО «Мосинжпроект» (Р.Б. Некрасов).

СВОД ПРАВИЛ

ПРИСПОСОБЛЕНИЕ МЕТРОПОЛИТЕНОВ ПОД ЗАЩИТНЫЕ СООРУЖЕНИЯ ГРАЖДАНСКОЙ ОБОРОНЫ

Общие правила проектирования

Adaptation of subways under the protective constructions of civil defense. General rules of design

Дата введения 2017-06-17

1 Область применения

- 1.1 Настоящий свод правил устанавливает требования к приспособлению реконструируемых и вновь строящихся станций и линий метрополитенов под защитные сооружения гражданской обороны, которые следует соблюдать при проектировании и эксплуатации объектов метрополитенов.
- 1.2 Положения настоящего свода правил не распространяются на объекты метрополитена, проектная документация которых до вступления в силу настоящего свода правил получила положительное заключение государственной экспертизы.

2 Нормативные ссылки

В настоящем своде правил использованы нормативные ссылки на следующие документы:

ГОСТ 30244—94 Материалы строительные. Методы испытаний на горючесть

ГОСТ 31565—2012 Кабельные изделия. Требования пожарной безопасности

ГОСТ Р 53316—2009 Кабельные линии. Сохранение работоспособности в условиях пожара. Метод испытаний

ГОСТ Р 54812—2011 Дизель-генераторы судовые вспомогательные и аварийные. Типы и основные параметры. Общие технические требования

СП 1.13130.2009 Системы противопожарной защиты. Эвакуационные пути и выходы (с изменением № 1)

СП 3.13130.2009 Системы противопожарной защиты. Система оповещения и управления эвакуацией людей при пожаре. Требования пожарной безопасности

СП 5.13130.2009 Системы противопожарной защиты. Установки пожарной сигнализации и пожаротушения автоматические. Нормы и правила проектирования (с изменением № 1)

СП 12.13130.2009 Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности

СП 52.13330.2011 «СНиП 23-05—95* Естественное и искусственное освещение»

СП 88.13330.2014 «СНиП II-11—77* Защитные сооружения гражданской обороны»

СП 112.13330.2011 «СНиП 21-01—97* Пожарная безопасность зданий и сооружений»

СП 120.13330.2012 «СНиП 32-02—2003 Метрополитены» (с изменением № 1)

СП 165.1325800.2014 «СНиП 2.01.51—90 Инженерно-технические мероприятия по гражданской обороне»

СанПиН 2.1.4.1074—01 Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества

П р и м е ч а н и е — При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования — на официальном сайте федерального органа исполнительной власти в сфере стандартизации в сети Интернет или по ежегодному информационному указателю

«Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде технических регламентов и стандартов.

3 Термины, определения и сокращения

- 3.1 В настоящем своде правил применены следующие термины с соответствующими определениями:
- 3.1.1 воздействия: Нагрузка, изменения температурно-влажностного режима, влияния на защитное сооружение окружающей среды, осадка оснований, изменение свойств материалов во времени и другие факторы, вызывающие изменение напряженно-деформированного состояния строительных конструкций, которые при проведении расчетов допускается задавать в виде эквивалентно-статических нагрузок.
- 3.1.2 **герметичность сооружения:** Защитное свойство сооружения, характеризуемое степенью воздухонепроницаемости ограждающих строительных конструкций по границам герметизации, в том числе стыков сборных элементов, входных устройств, мест пропуска коммуникаций, газовоздушных трактов.

3.1.3

гражданская оборона: Система мероприятии по подготовке к защите и по защите населения, материальных и культурных ценностей на территории Российской Федерации от опасностей, возникающих при военных конфликтах или вследствие этих конфликтов, а также при чрезвычайных ситуациях природного и техногенного характера.

[Федеральный закон от 12 февраля 1998 г. № 28-ФЗ, статья 1]

3.1.4 дополнительные сооружения и устройства: Сооружения и устройства, рассчитанные на восприятие заданных воздействий средств поражения (поражающих факторов) и предназначенные для защиты и жизнеобеспечения населения, укрываемого в метрополитене в течение расчетного периода времени, включающие дизельные электростанции, фильтровентиляционные установки, установки водоснабжения, водоотвода и канализации, защитно-герметические затворы, устройства связи и управления.

3.1.5 заложение линии:

глубокое: Заложение, при котором станции и перегонные тоннели сооружаются через вертикальные стволы и наклонные эскалаторные тоннели без вскрытия дневной поверхности;

мелкое: Заложение, при котором объекты метрополитена сооружаются открытым способом (с том числе из-под перекрытия), со вскрытием дневной поверхности, перегонные тоннели — открытым или закрытым способом.

3.1.6

защитное сооружение гражданской обороны; ЗСГО: Специальное сооружение, предназначенное для защиты населения, личного состава сил гражданской обороны, а также техники и имущества гражданской обороны от воздействия средств нападения противника.

[ГОСТ Р 42.0.02—2001, пункт 29]

3.1.7

защита населения в чрезвычайных ситуациях: Совокупность взаимоувязанных по времени, ресурсам и месту проведения мероприятий РСЧС, направленных на предотвращение или максимальное снижение угрозы жизни, здоровью и потерь населения от поражающих факторов и воздействий источников чрезвычайных ситуаций.

[ГОСТ Р 22.0.02—94, пункт 2.3.7]

- 3.1.8 зона чрезвычайной ситуации: Территория, на которой сложилась чрезвычайная ситуация.
- 3.1.9 инженерно-технические мероприятия гражданской обороны и предупреждения чрезвычайных ситуаций; ИТМ ГОЧС: Совокупность реализуемых при строительстве проектных решений, направленных на обеспечение защиты населения и территорий и снижение материального ущерба от

ЧС техногенного и природного характеров, от опасностей, возникающих при ведении военных конфликтов или вследствие этих конфликтов, а также при диверсиях и террористических актах.

- 3.1.10 **обычное средство поражения:** Вид оружия, не относящийся к оружию массового поражения, оснащенный боеприпасами, снаряженными взрывчатыми или горючими веществами.
- 3.1.11 противорадиационное укрытие; ПРУ: Защитное сооружение гражданской обороны, предназначенное для защиты укрываемых от воздействия ионизирующих излучений при радиоактивном заражении (загрязнении) местности и допускающее непрерывное пребывание в нем укрываемых в течение нормативного времени.
- 3.1.12 **санитарный пропускник (санпропускник):** Помещение, предназначенное для смены одежды, санитарной обработки персонала и контроля радиоактивного загрязнения кожных покровов и спецодежды.
- 3.1.13 сооружение двойного назначения: Инженерное сооружение производственного, общественного, коммунально-бытового или транспортного назначения, приспособленное (запроектированное) для укрывания людей, техники и имущества от опасностей, возникающих при ведении военных конфликтов или вследствие этих конфликтов, диверсиях, в результате аварий на потенциально опасных объектах или стихийных бедствий.
- 3.1.14 **строительная конструкция:** Часть защитного сооружения, выполняющая определенные несущие или ограждающие функции.
- 3.1.15 убежище гражданской обороны (убежище ГО): Защитное сооружение гражданской обороны, предназначенное для защиты укрываемых в течение нормативного времени от расчетного воздействия поражающих факторов ядерного и химического оружия и обычных средств поражения, бактериальных (биологических) средств и поражающих концентраций аварийно химически опасных веществ, возникающих при аварии на потенциально опасных объектах, а также от высоких температур и продуктов горения при пожарах.
- 3.1.16 укрытие гражданской обороны (укрытие ГО): Защитное сооружение гражданской обороны, предназначенное для защиты укрываемых от фугасного и осколочного действия обычных средств поражения, поражения обломками строительных конструкций, а также от обрушения конструкций вышерасположенных этажей зданий различной этажности.
- 3.1.17 участок с автономным жизнеобеспечением: Приспособленный под убежище участок линии метрополитена, обеспеченный дополнительными сооружениями и устройствами.
- 3.1.18 фугасное действие: Действие боеприпасов, при котором цель поражается продуктами взрыва разрывного заряда и образующейся ударной волной.
- 3.1.19 **чрезвычайная ситуация:** Обстановка на определенной территории, сложившаяся в результате аварии, опасного природного явления, катастрофы, стихийного или иного бедствия, которые могут повлечь или повлекли за собой человеческие жертвы, ущерб здоровью людей или окружающей среде, значительные материальные потери и нарушение условий жизнедеятельности людей.
- 3.1.20 **шлюз:** Часть подземного защитного сооружения, ограниченная по концам защитно-герметическими затворами с блокировкой, не допускающей их одновременного открытия.
- 3.1.21 **эвакуация населения, материальных и культурных ценностей:** Комплекс мероприятий по организованному вывозу (выводу) населения, материальных и культурных ценностей из зон возможных опасностей и их размещению в безопасных районах.
- 3.1.22 **эвакуационный выход:** Выход наружу без разгерметизации сооружения или в соседний пожарный отсек.
- 3.1.23 эксплуатационный персонал (персонал): Специально подготовленные лица, прошедшие проверку знаний в объеме, обязательном для данной работы или должности.
 - 3.2 В настоящем своде правил применены следующие сокращения:

ABP — автоматическое включение резерва;

АУПТ — автоматическая установка пожаротушения;

АХОВ — аварийно химически опасные вещества:

ВОУ — водоотливная установка;

ГЖ — горючие жидкости; ГО — гражданская оборона;

ГСМ — горюче-смазочные материалы;

ДГ — дизель-генератор;

ДПС — диспетчерский пункт станции;

ДПЛ — диспетчерский пункт линии (метрополитена);

```
ДСУ — дополнительные сооружения и устройства;
ДЭС — дизельная электростанция;
ЗКП ГО и ЧС — защищенный командный пункт органа управления по делам ГО и ЧС;
КП — командный пункт;
кпвв

    командный пункт воздуховыпуска;

        — командный пункт ДЭС;
КПД
КПЛ

командный пункт линии;

КПМ

    командный пункт метрополитена;

КПОПБ — командный пункт охраны порядка и безопасности;
КПОПБС — командный пункт охраны порядка и безопасности станции;
КПОПБУ — командный пункт охраны порядка и безопасности участка;
КПС

    командный пункт станции;

КПУ

    командный пункт участка;

КПФ

    командный пункт ФВУ;

КПШ
        — командный пункт шлюза;
ОВ — отравляющие вещества;
ОРГ — оперативно-разведывательная группа;
    пост у затвора;
ПИ — полная изоляция;

    понизительная подстанция;

ПШЗ — пост у шлюзового затвора;
РУ — распределительное устройство;
СВВ — сейсмовзрывная волна;
СПЗ — система пожарной защиты;
ТПП — тяговопонизительная подстанция:
УАЖ — участок с автономным жизнеобеспечением;
УТВ — установка тоннельной вентиляции;
ФВ — фильтровентиляция;
ФВУ — фильтровентиляционная установка;
ЦУС — центральная усилительная станция;
ЧΒ
    — чистая вентиляция:
чС

    чрезвычайная ситуация:

ЭМИ — электромагнитный импульс.
```

4 Общие положения

4.1 Приспособление метрополитена под укрытия гражданской обороны

- 4.1.1 Объекты метрополитенов, приспосабливаемые под укрытия гражданской обороны, предназначены для защиты укрываемых от фугасного действия обычных средств поражения, поражения обломками строительных конструкций от обрушения вышерасположенных этажей зданий различной этажности и при чрезвычайных ситуациях мирного времени.
- 4.1.2 Создание и приспособление объектов метрополитена в качестве укрытий гражданской обороны осуществляется в мирное время, а также в период мобилизации и в военное время в соответствии с планами гражданской обороны федеральных органов исполнительной власти и организаций, планами гражданской обороны и защиты населения субъектов Российской Федерации и муниципальных образований.
- 4.1.3 Ввод укрываемого населения в метрополитен осуществляется в соответствии с 4.3.4, при этом время заполнения не нормируется.
- 4.1.4 Вывод населения из метрополитена после воздействия средств поражения осуществляется в соответствии с 4.3.5.
- 4.1.5 Расчетную продолжительность непрерывного пребывания укрываемого населения в сооружениях метрополитенов, приспосабливаемых под укрытие ГО, следует принимать равной 12 ч.

Для обеспечения укрываемых следует предусматривать водоснабжение, канализацию, электроснабжение и инвентарь для размещения людей (лежаки, складные стулья, раскладушки и т. д.) в соответствии с разделами 11, 12.

- 4.1.6 Управление работой метрополитена в военное время предусматривается из защищенного командного пункта метрополитена в соответствии с 4.3.7, 4.3.8.
- 4.1.7 Проектирование дополнительных сооружений и устройств следует осуществлять в соответствии с 4.3.6, 4.3.10—4.3.15.
- 4.1.8 Расчеты укрытий на фугасное действие обычных средств поражения и поражения обломками строительных конструкций от обрушения вышерасположенных этажей зданий различной этажности проводят по методикам, изложенным в СП 88.13330.

Наряд средств поражения определяют территориальные органы МЧС России. При отсутствии данных для ориентировочной оценки рекомендуется использовать наряд средств поражения, приведенный в СП 88.13330.

4.2 Приспособление метрополитена под противорадиационные укрытия гражданской обороны

- 4.2.1 Приспособление станций и линий метрополитена в качестве противорадиационных укрытий ГО осуществляется в случае их расположения в зоне возможного радиоактивного загрязнения от объектов использования атомной энергии.
- 4.2.2 Приспособление объектов метрополитена в качестве противорадиационных укрытий гражданской обороны следует осуществлять в соответствии с 4.3.
- 4.2.3 Расчет противорадиационной защиты проводят в соответствии с требованиями СП 88.13330. Зону возможного радиоактивного загрязнения от объектов использования атомной энергии определяют в соответствии с требованиями СП 165.1325800.

4.3 Приспособление метрополитена под убежища гражданской обороны

4.3.1 Объекты метрополитенов, приспосабливаемые под убежища гражданской обороны, предназначены для защиты укрываемого населения в военное время и при чрезвычайных ситуациях мирного времени.

Решение о приспособлении станций и линий метрополитена в качестве убежища ГО принимается органом исполнительной власти субъекта Российской Федерации в соответствии с требованиями СП 120.13330.

В военное время убежища должны обеспечивать защиту от расчетного воздействия средств поражения, высоких температур и продуктов горения при пожарах, бактериальных (биологических) средств, отравляющих веществ, а также при необходимости от аварийно химически опасных веществ в соответствии с требованиями СП 165.1325800.

Чрезвычайные ситуации мирного времени природного и техногенного характеров определяются исполнительным органом субъекта Российской Федерации совместно с территориальными органами МЧС России по результатам анализа рисков их возникновения.

4.3.2 Сооружения и устройства метрополитенов, эксплуатируемые в мирное время в транспортном режиме, максимально используют в режиме убежища для защиты и жизнеобеспечения укрываемых людей.

Дополнительные сооружения и устройства не должны приводить к ухудшению эксплуатационных качеств сооружений и устройств и нарушению условий работы метрополитена в транспортном режиме.

4.3.3 Все подземные линии метрополитенов должны быть изолированы от внешней среды защитно-герметическими затворами. Приспосабливаемые под убежища линии метрополитена должны быть разделены на участки длиной не более 10 км, в каждом из которых необходимо предусматривать дополнительные сооружения и устройства, обеспечивающие его автономное функционирование (участки с автономным жизнеобеспечением).

Участки необходимо отделять от наружной среды и от других участков защитно-герметическими устройствами. Каждый участок, кроме того, разделяется линиями герметизации на два-три отсека длиной до 5 км с включением в отсек не более трех станций. Режим работы транспортных средств в рабочем режиме на этих участках определяет начальник метрополитена.

4.3.4 Ввод укрываемого населения в метрополитен необходимо предусматривать через входы вестибюлей станций, через дополнительные входы в порталах тоннелей и в середине перегонных тоннелей при расстоянии между осями смежными торцами платформ соседних станций более 3000 м, а также по отдельному заданию в местах расположения предприятий и учреждений.

Расчетное время заполнения станций и тоннелей укрываемыми людьми по сигналам ГО следует принимать равным 10 мин. В отдельных случаях заданием на проектирование допускается увеличение указанного времени до 15 мин.

- 4.3.5 Для вывода населения из метрополитена после воздействия средств поражения следует предусматривать эвакуационный выход не менее одного на два-три отсека, приспосабливая для этой цели подземные сооружения метрополитенов, сообщающиеся с поверхностью земли. Для этой цели следует использовать:
- а) на линиях мелкого заложения подземные вестибюли станций с примыкающими к ним подземными пешеходными переходами, порталы тоннелей, стволы шахт вентиляционных установок, дополнительные входы на перегонах;
- б) на линиях глубокого заложения эскалаторные тоннели и подземные вестибюли станций с примыкающими к ним подземными пешеходными переходами, эскалаторные тоннели и наземные вестибюли, дополнительные входы на перегонах.

Эвакуационный выход должен располагаться за пределами зон возможных завалов.

- 4.3.6 Проектирование дополнительных сооружений и устройств должно осуществляться, исходя из следующих условий:
- размеры (интервалы) движения поездов в военное время устанавливают в соответствии с объемами намечаемых перевозок;
- число обращающихся на линии поездов определяют, исходя из условий их расстановки: по два поезда на каждой станции и по одному на каждом станционном пути. Расстановка поездов в перегонных тоннелях не предусматривается;
 - на платформах станций предусматриваются сходные устройства для спуска людей на путь;
- длина состава для условий военного времени определяется с учетом возможности использования сходных устройств;
- световая маскировка наземных объектов и входов в подземные объекты обеспечивается путем централизованного отключения осветительных приборов или механического закрытия светящихся объектов.
- 4.3.7 Управление работой метрополитена в военное время предусматривается из защищенного командного пункта метрополитена и подчиненных ему командных пунктов на линиях. В мирное время КПМ может использоваться при возникновении чрезвычайных ситуаций, исключающих функционирование наземных средств управления.

Структуру управления КПМ из городских пунктов управления в мирное и военное время устанавливают территориальные органы МЧС России.

- 4.3.8 КПМ необходимо размещать в районе расположения здания диспетчерских пунктов метрополитена (ЗДПМ). Между КПМ и ЗДПМ следует предусматривать соединения, предназначенные для прохода персонала и прокладки кабелей.
- 4.3.9 Для персонала метрополитена, располагаемого в наземных зданиях и объектах, длина пути от которых до ближайшего входа в защитное сооружение метрополитена составляет более 800 м, необходимо предусматривать отдельные убежища.
- 4.3.10 Дополнительные сооружения и устройства, используемые в транспортном режиме и в режиме ГО и ЧС, следует проектировать по СП 120.13330, а также по соответствующим положениям настоящего свода правил.

Сооружения и устройства, используемые только в режиме ГО и ЧС, следует проектировать по СП 165.1325800 и по настоящему своду правил, а также по соответствующим положениям СП 120.13330.

Проектирование основных и дополнительных сооружений и устройств рекомендуется выполнять одновременно.

- 4.3.11 Технические решения по приспособлению метрополитена под убежища необходимо принимать на основе сравнения технико-экономических показателей заданных вариантов, включая показатели эффективности капитальных вложений по каждому варианту, оцениваемых по затратам на приспособление в расчете на одного укрываемого человека.
- 4.3.12 Расчеты показателей водопритоков и защищенности сооружений должны выполняться с использованием СП 165.1325800, СП 120.13330 на основе задаваемых исходных положений.
- 4.3.13 В составе проектной документации на строительство приспосабливаемой под убежище линии метрополитена должен быть обязательный раздел «Дополнительные сооружения и устройства», содержание которого следует принимать по настоящему своду правил.
- 4.3.14 Состав задания на проектирование дополнительных сооружений и устройств должен отражать следующие данные:

- основание для проектирования;
- расчетные сценарии возможных чрезвычайных ситуаций, перечень и параметры средств поражения:
 - расчетные нагрузки на сооружения и устройства, а также режим функционирования;
- варианты использования линии по сигналам ГО (в качестве убежища, в транспортном режиме для эвакуации и рассредоточения населения и др.);
 - перечень приспосабливаемых участков и состав ДСУ;
 - перечень используемых входов в метрополитен для заполнения и эвакуации укрываемых людей;
- время пропуска людей в метрополитен до закрытия затворов, время эвакуации пассажиров из метрополитена в военное время и при возникновении опасности их поражения при ЧС в мирное время;
- характеристику возможной пожарной обстановки и вторичных поражающих факторов в зонах размещения установок тоннельной вентиляции и ФВУ;
- данные о предполагаемой численности укрываемых людей, тяготеющих к входам в метрополитен за расчетное время заполнения, включая численность детей до трех лет.

Задание на проектирование раздела «Дополнительные сооружения и устройства» согласовывается территориальными органами МЧС России.

При проектировании дополнительных сооружений совместно с линией метрополитена требования к ним допускается отражать в общем техническом задании.

- 4.3.15 Приспособление дополнительных сооружений и метрополитена следует выполнять с условием, что на его перевод в режим полной готовности для функционирования в качестве защитного сооружения потребуется не более 12 ч.
- 4.3.16 Расчетную продолжительность непрерывного пребывания укрываемого населения в сооружениях метрополитенов, приспосабливаемых под убежища ГО, следует принимать равной двум суткам, включая время, необходимое для эвакуации (аварийного вывода) 12 ч.

5 Расчет численности укрываемого населения

5.1 Размещение укрываемого населения в метрополитене следует предусматривать на платформах станций, в поездах, стоящих у платформ, в перегонных тоннелях, тупиках, соединительных ветках между разными линиями и ветках в электродепо.

Не допускается размещение людей:

- на участках перегонных тоннелей линий мелкого заложения, расположенных под реками, каналами и водоемами, а также в неустойчивых водонасыщенных грунтах с уровнем грунтовых вод выше оси тоннеля;
- на участках перегонных тоннелей линий глубокого заложения, расположенных под реками, каналами и водоемами, если расстояние от тоннелей до слоя неустойчивых водонасыщенных грунтов менее двух диаметров тоннеля;
- на переходных участках с глубокого на мелкое заложение, расположенных в неустойчивых водонасыщенных грунтах.
- 5.2 Расчетное число укрываемых людей следует определять с учетом расстановки поездов по сигналам ГО, исходя из нормы площади на одного человека, м²:
 - в тоннелях линий глубокого заложения и на платформах станций 1,0;
 - в тоннелях линий мелкого заложения 1,5.

Численность людей в поездах, стоящих у платформ станций, следует принимать равной 50 чел. на каждый вагон.

Расчетную площадь пола в тоннеле следует определять на уровне головок рельсов.

5.3 Расчетную скорость движения людей по тоннелям следует принимать равной 2 км/ч.

6 Объемно-планировочные решения

6.1 Основные положения

- 6.1.1 Пропускную способность входов в метрополитен при заполнении и выводе населения следует определять расчетом, исходя из требований СП 120.13330.
- 6.1.2 Все входы в метрополитен следует оснащать устройствами, регулирующими поток укрываемых людей.

- 6.1.3 По концам платформ станций следует предусматривать сходные устройства на каждый путь; расстояние между ними должно превышать максимальную расчетную длину поезда с учетом количества вагонов на период ГО. Сходные устройства рекомендуется встраивать в платформу; приведение их в рабочее положение должно обеспечиваться двумя работниками за время не более 2 мин.
 - 6.1.4 Туалеты для укрываемого населения рекомендуется размещать:
 - на станциях мелкого заложения в уровне подземного вестибюля;
 - на станциях глубокого заложения в уровне платформы станции в отдельной выработке;
 - в перегонных и других тоннелях в уровне тоннелей.

Вместимость туалетов следует принимать по 11.3.

Туалеты на станциях следует предусматривать с учетом их использования персоналом в мирное время.

- 6.1.5 При использовании метрополитена в качестве укрытий особых требований к объемно-планировочным решениям не предъявляется.
- 6.1.6 При использовании метрополитена в качестве противорадиационных укрытий объемно-планировочные решения следует осуществлять в соответствии с требованиями раздела 6 СП 88.13330.2014.

6.2 Объемно-планировочные решения убежищ

- 6.2.1 При использовании объектов метрополитена в качестве убежищ их объемно-планировочные решения следует выполнять в соответствии с требованиями раздела 5 СП 88.13330.2014 и СП 120.13330.
- 6.2.2 Для медицинского обслуживания укрываемых людей на станциях следует использовать медицинские пункты согласно СП 120.13330, а также из состава бытовых помещений станции выделять не менее трех помещений площадью по 10—15 $\rm m^2$ для использования в режиме убежища в качестве изоляторов и кладовых медикаментов и медицинского имущества. Общую площадь помещений следует определять из расчета 15 $\rm m^2$ на 2500 человек.
- 6.2.3 Каждый УАЖ должен состоять, как правило, из отсеков на участках линий только мелкого или только глубокого заложения. В отдельных случаях они могут состоять из отсеков, расположенных на участках линий глубокого и мелкого заложения.

В каждом УАЖ следует предусматривать, как правило, один эвакуационный выход на поверхность. В УАЖ с отсеками на участках линий глубокого и мелкого заложения допускается предусматривать эвакуационный выход только на участке глубокого заложения.

- В составе эвакуационных выходов следует предусматривать санпропускники согласно разделу 16.
- 6.2.4 Пропускную способность шлюзов эвакуационных выходов следует определять, исходя из возможности вывода людей на поверхность за расчетное время 12 ч.

В качестве шлюза следует использовать:

- а) на линиях мелкого заложения подземный пешеходный переход, припортальный участок перегонного тоннеля, один из отсеков, участок перегона со станцией;
- б) на линиях глубокого заложения подземный пешеходный переход, подземный вестибюль, защищенный наземный вестибюль, один из отсеков, участок перегона со станцией. Площадь шлюза следует определять из расчета 0,2 м² площади пола на одного человека.
- 6.2.5 Пропускную способность шлюза на станции с подземным пешеходным переходом и подземным вестибюлем следует определять с учетом обеспечения прохода 10 % расчетного числа укрываемых людей в части отсека, заполняемой через данную станцию. Для этой цели допускается использовать также шлюзы, входящие в состав других эвакуационных выходов.

Число циклов работы шлюза следует принимать не более четырех в течение 1 ч.

- 6.2.6 Состав дополнительных входов в перегонные или другие тоннели следует устанавливать в задании на проектирование.
- 6.2.7 ДЭС и ФВУ следует размещать в непосредственной близости от сооружений метрополитена, как правило, в технической зоне строительства.

При технической возможности ДЭС и ФВУ рекомендуется размещать в междупутье, над тоннелями метрополитена или сбоку, а также в выработках рабочих шахт. При этом размеры выработок следует назначать с учетом размещения в них ДЭС и ФВУ, а их обделку предусматривать в постоянных конструкциях.

7 Строительные конструкции

7.1 Основные положения

7.1.1 Строительные конструкции приспосабливаемых участков линий и сооружений метрополитена следует предусматривать согласно СП 120.13330 и проверять на соответствие требованиям СП 88.13330, СП 165.1325800 и настоящего свода правил.

К таким строительным конструкциям относятся:

- обделки сооружений;
- внутренние несущие (опорные) стены, ригели, колонны и фундаменты:
- междуэтажные перекрытия, если они являются дополнительными опорами наружных стен;
- внутренние конструкции (перегородки, междуэтажные перекрытия, не являющиеся опорами наружных стен, колонны встроенных частей сооружений, фундаменты под оборудование, устройства для крепления оборудования и коммуникаций и т. п.).
 - 7.1.2 Несущие конструкции должны:
- обладать необходимой несущей способностью (прочностью), герметичностью, в том числе после воздействия расчетных средств поражения (приложение В), а также обеспечивать совместно с грунтовой толщей защиту от поражающих факторов;
 - выдерживать сейсмовзрывное воздействие расчетных средств поражения;
 - снижать действие ЭМИ расчетных средств поражения;
 - обеспечивать требуемую степень ослабления проникающей радиации;
 - удовлетворять требованиям пожарной безопасности;
 - обладать устойчивостью против коррозии;
 - быть экономичными и технологичными при строительстве.
 - 7.1.3 Внутренние конструкции и их сопряжения с обделками должны удовлетворять требованиям:
- прочности с учетом деформации элементов, подвергающихся непосредственному воздействию поражающих факторов и усилий, возникающих в результате действия инерционных сил;
 - герметичности, в том числе и после воздействия расчетных средств поражения;
 - пожарной безопасности.
- 7.1.4 Перегонные защитно-герметические затворы с электроприводом должны закрываться и обеспечивать герметизацию за время, не превышающее 2,5 мин., остальные защитно-герметические затворы с электроприводом должны закрываться за время, не превышающее 2 мин.

7.2 Нагрузки и воздействия

7.2.1 Несущие конструкции сооружений метрополитена следует рассчитывать на особое сочетание нагрузок, состоящее из постоянных и временных нагрузок, определяемых в соответствии с требованиями СП 120.13330, а также динамической либо статической нагрузки, эквивалентной действию динамической нагрузки от воздействия ударной или сейсмовзрывной волны (эквивалентной статической нагрузки), а также от фугасного действия обычных средств поражения, поражения обломками строительных конструкций от обрушения вышерасположенных этажей зданий различной этажности.

Все несущие конструкции следует проверять расчетом на основное сочетание нагрузок и воздействий, соответствующих условиям эксплуатации в мирное время в соответствии с требованиями СП 120.13330.

Значение нагрузки от воздействия средств поражения на уровне расположения объектов метрополитена следует определять по существующим методикам аналитическими или численными методами.

7.2.2 При расчете сооружений на особое сочетание нагрузок коэффициенты сочетания нагрузок и перегрузки к эквивалентным статическим, постоянным и временным нагрузкам следует принимать равными единице.

При проектировании сооружений метрополитена в качестве убежищ, располагаемых в сейсмоактивных районах, в расчете на особое сочетание нагрузок сейсмическое воздействие не учитывается.

7.2.3 Несущие конструкции сооружений следует рассчитывать по предельному состоянию 1б согласно требованиям СП 88.13330 и СП 120.13330, с учетом упруго-пластических свойств материалов.

Параметры поражающих факторов, используемые при расчете нагрузок, следует принимать в соответствии с заданием на проектирование, согласованным с территориальными органами МЧС России. Защищенность сооружений следует определять для каждого варианта проектирования в соответствии с 4.3.11.

7.2.4 Строительные конструкции и защитные устройства сооружений метрополитенов, приспосабливаемых для защиты населения, а также дополнительных сооружений для укрываемого населения

следует рассчитывать на нагрузки от воздействия воздушной ударной волны с избыточным давлением во фронте на поверхности земли, равным 100 кПа (1 кгс/см²) для линий глубокого и мелкого заложения. Нагрузку на несущие конструкции и оборудование следует определять в зависимости от глубины заложения и физико-механических свойств грунтового массива.

7.2.5 Несущие конструкции сооружений рассчитывают на действие обычных средств поражения, поражения обломками строительных конструкций от обрушения вышерасположенных этажей зданий различной этажности по методикам, приведенным в СП 88.13330.

7.3 Конструктивные решения

7.3.1 Несущие конструкции приспосабливаемых участков линий метрополитена должны обладать достаточной несущей способностью и герметичностью.

Для сборных и сборно-монолитных конструкций следует предусматривать надежные связи между собой и с фундаментом с использованием сварки закладных деталей или выпусков арматуры и омоноличиванием узлов сопряжения бетоном, заполнением швов между сборными элементами.

В водонасыщенных грунтах заполнение швов выполняется материалом с герметизирующими свойствами не ниже материала несущих конструкций.

- 7.3.2 Внутренние перегородки следует выполнять из монолитных или сборных конструкций на легком бетоне или армокирпичной кладки; их крепление к стенам, колоннам, перекрытиям следует предусматривать с учетом воздействия инерционных нагрузок и возможности деформации элементов перекрытий и вертикальных осадок стен и колонн при воздействии расчетных нагрузок.
- 7.3.3 Сооружения глубокого заложения для уменьшения неравномерности осадок, а также восприятия гидростатических и динамических нагрузок в водонасыщенных грунтах должны быть замкнутыми, с устройством в лотковой части сплошной фундаментной плиты или при больших пролетах нижнего свода.
- 7.3.4 Для защиты входных проемов подземных участков линий и разделения их на отсеки при проектировании убежищ и ПРУ следует предусматривать защитно-герметические затворы с электроприводами:
 - по одному затвору:
 - а) во входах в подземные вестибюли станций;
 - б) в нижнем зале перед эскалаторным тоннелем станции глубокого заложения;
 - в) в тоннелях перед выходом линии на поверхность;
 - г) в помещениях установок тоннельной вентиляции и кабельных шахт;
- д) в местах выделения участков перегонных тоннелей под руслами рек или в водонасыщенных неустойчивых грунтах;
 - е) между отсеками равной степени защиты;
- ж) в одном из тоннелей отсека с разной степенью защиты, где не предусматривается устройство шлюза:
- и) в пассажирских помещениях (коридорах) пересадочных сооружений между станциями разных линий;
 - по два затвора, устанавливаемых последовательно:
 - а) в местах устройства шлюзов;
- б) в служебных переходах из подплатформенных помещений станций глубокого заложения в натяжные помещения эскалаторов (с ручным приводом).
- В установках тоннельной вентиляции затворы по возможности следует устанавливать не ближе 10—15 м от ствола шахты, низ проема затвора принимать на высоте не менее 400—500 мм от уровня чистого пола.
- 7.3.5 Закладные части для крепления затворов и вводов инженерных коммуникаций следует предусматривать с учетом нагрузок от воздействия ударной волны и волны затекания.
- 7.3.6 На вводах коммуникаций, обеспечивающих внешние связи сооружений, а также функционирование систем внутреннего оборудования после воздействия расчетной нагрузки, следует предусматривать компенсационные устройства с учетом максимально возможных осадок сооружения в целом или его отдельных частей.

Вводы инженерных коммуникаций следует размещать с внутренней стороны сооружений в доступных для осмотра и ремонта местах.

На трубопроводах водо- и теплоснабжения, а также водоотвода и канализации внутри сооружения следует предусматривать запорную арматуру.

7.3.7 Конструкция стыка облицовки с ограждающими и внутренними несущими конструкциями станционных комплексов, вестибюлей, галерей, эстакад и переходов метрополитена должна обеспечивать восприятие нагрузки от действия расчетных средств поражения.

8 Оценка несущей способности сооружений

8.1 Целью расчета является определение рациональных размеров и форм конструктивных элементов сооружений, при которых обеспечиваются оптимальные технико-экономические показатели метрополитена согласно 4.3.11. В качестве базового варианта допускается рассматривать существующие (типовые для данных условий) конструкции сооружений.

При наличии требований, указанных в задании на проектирование, в расчетах допускается определять степень повреждения конструкций, снижение их несущей способности и других эксплуатационных качеств (водонепроницаемость, герметичность и т. п.) при параметрах воздействий, превышающих расчетные, в пределах, позволяющих обеспечить функционирование сооружений в заданном объеме.

- 8.2 Расчетные схемы и математические модели строительных конструкций должны отражать действительные условия работы сооружений, отвечающие рассматриваемой расчетной ситуации. При этом следует учитывать факторы, определяющие напряженное и деформированное состояния, особенности взаимодействия элементов конструкций между собой, пространственную работу конструкций, геометрическую и физическую нелинейности, пластические и реологические свойства материалов и грунтов, наличие трещин в железобетонных конструкциях, а также материал несущих конструкций (чугунные и стальные тюбинги), в соответствии с требованиями СП 120.13330.
- 8.3 Конструкции сооружений необходимо рассчитывать на совместное действие статических и динамических нагрузок по 7.2 с учетом их неблагоприятного сочетания.
- 8.4 Расчет сооружений на действие динамических нагрузок следует выполнять для условий работы материала в упругой и пластической (упругопластической) стадиях с учетом:
 - повышения прочностных характеристик материала при больших скоростях деформирования;
- рассеивания энергии и затухания колебаний за счет вязких свойств материала, в том числе прослойки и реактивного сопротивления грунта;
 - нарастания прочности бетона во времени;
- изменения прочности и деформационных свойств материалов в условиях сложного напряженного состояния, а также вследствие предыдущих воздействий (при расчетах на многократное воздействие средств поражения).
- 8.5 Расчеты с целью определения уровней защищенности ограждающих конструкций станций, тоннелей мелкого и глубокого заложения следует выполнять с учетом окружающей их геологической среды в следующем составе:
- расчет протяженных цилиндрических сооружений некругового поперечного сечения, возводимых в грунтовых массивах при наличии слоев грунтов с различными механическими свойствами;
- расчет железобетонных конструкций в виде плоских рам, частично или полностью заглубленных в грунт;
 - расчет плоских железобетонных рам при действии кратковременных динамических нагрузок.
- 8.6 Расчеты несущей способности для оценки эффективности вариантов следует выполнять по предельным состояниям 1а и 1б в соответствии с требованиями СП 88.13330 и СП 120.13330.

Во всех случаях при использовании метрополитена в качестве убежищ или ПРУ должна обеспечиваться герметичность внутреннего объема сооружения для защиты от воздействия поражающих факторов военного времени и при чрезвычайных ситуациях мирного времени природного и техногенного характеров в соответствии с требованиями СП 88.13330.

На основании расчетов следует определять параметры движения и напряженно-деформированного состояния обделки во времени при радиальных колебаниях.

- 8.7 Динамические расчеты обделок с учетом пластических свойств материалов конструкции и грунта следует выполнять в соответствии с требованиями СП 120.13330, исходя из следующих предпосылок:
- рассматривается протяженное подземное сооружение, обделка которого выполнена в виде некругового цилиндра с направляющей в виде гладкой замкнутой кривой;
 - предполагается плоское деформирование грунтового массива и обделки;
 - на границе между обделкой и контуром выработки имеются односторонний контакт и сухое трение;
- для описания напряженно-деформированного состояния обделки используются соотношения теории оболочек средней толщины с учетом поперечного сдвига и инерции вращения сечения;

- учитывается упругопластическое деформирование материалов конструкций (бетона и арматуры) и грунта:
- задается воздействие в виде плоской продольной СВВ, распространяющейся в массиве, фронт которой параллелен продольной оси сооружения.

Исходными данными для расчета являются геометрические и массовые характеристики конструкций, механические свойства грунта, бетона и арматуры, параметры СВВ и угол ее подхода к сооружению.

8.8 На основании расчетов следует определять внутренние усилия в обделке, напряжения и деформации материала несущих конструкций (бетона, арматуры, чугуна или стали), скорости перемещения элементов конструкций.

9 Оценка водопритоков при повреждении конструкций

- 9.1 Расчет обводнения подземных сооружений после расчетных средств поражения включает:
- оценку водопритока в горизонтальные выработки, поврежденные в результате одно- и многоразового воздействия с учетом фактического состояния депрессионной поверхности во вмещающем сооружение водоносном горизонте, и в вертикальные выработки при условии свободного оттока воды к основному объему, что соответствует выходу из строя линии защиты;
 - расчет затопления сооружений с учетом работы водоотливных установок.
- 9.2 В расчетах водопритоков коэффициент фильтрации ненарушенных пород следует принимать по материалам гидрогеологических изысканий или ориентировочно по таблице 9.1.

Таблица 9.1

Vanaumanua	Коэффициент фильтрации		
Характеристика пород по водопроницаемости	м/с	м/сут	
Непроницаемые, практически водоупорные, весьма слабоводопрони- цаемые (монолитные скальные, весьма слаботрещиноватые)	10 ⁻⁸ —10 ⁻⁷	10 ⁻³ —10 ⁻²	
Слабоводопроницаемые (малотрещиноватые)	10 ⁻⁷ —10 ⁻⁵	10 ⁻² —1,0	
Водопроницаемые (среднетрещиноватые)	10 ⁻⁵ —10 ⁻⁴	1,0—10	
Хорошо водопроницаемые (сильнотрещиноватые)	10 ⁻⁴ —10 ⁻³	10—10 ²	
Очень хорошо водопроницаемые (чрезвычайно трещиноватые)	10 ⁻³ —10 ⁻² и более	10 ² —10 ³	

9.3 Расчет водопритока в ствол шахты подземного сооружения через разрушенную обделку из водоносного горизонта следует проводить в соответствии с фазами формирования напорно-безнапорного движения воды.

Водоприток в ствол шахты с разрушенной обделкой, пересекающей несколько водоносных горизонтов, следует вычислять как сумму водопритоков из каждого водоносного горизонта.

9.4 Границу разрушенной обделки следует определять расчетом по предельному состоянию 1а в соответствии с требованиями СП 88.13330 и СП 120.13330.

П р и м е ч а н и е — Разрушенная обделка, с точки зрения водонепроницаемости, — это обделка, имеющая фильтрационную способность, превышающую фильтрационную способность окружающего грунтового массива.

- 9.5 Исходными данными для расчета служат:
- а) гидрогеологические характеристики водоносного горизонта (по материалам гидрогеологических изысканий):
 - мощность напорного водоносного горизонта (для безнапорного горизонта уровень воды), м;
- высота пьезометрического уровня (напор), отсчитываемая от кровли горизонта (для безнапорного горизонта H = 0), м;
 - коэффициент фильтрации, м/ч:
 - коэффициент водоотдачи;
 - коэффициент упругой водоотдачи;
 - б) фильтрационные характеристики области повышенной проницаемости:
 - радиус области, приведенной к цилиндру, м;

- средний коэффициент фильтрации породы в области, м/ч;
- коэффициент водоотдачи породы в области;
- коэффициент упругой водоотдачи породы в области:
- в) гидрогеологические характеристики вмещающего водоносного горизонта:
- высота пьезометрического уровня (напор) от кровли горизонта, м;
- мощность напорного водоносного горизонта, м;
- коэффициент фильтрации, м/ч;
- коэффициент водоотдачи;
- коэффициент упругой водоотдачи:
- г) характеристики сооружения:
- радиус выработки, м;
- толщина обделки, м;
- высота сохранившейся обделки, м;
- глубина заложения сооружения от его продольной оси до кровли для напорного и до уровня грунтовых вод для безнапорного водоносного горизонта, м.
- 9.6 В результате расчета затопления участков при аварийном поступлении воды через поврежденные ограждающие конструкции сооружения следует оценивать величину уровня воды в затапливаемых помещениях в любой момент времени после воздействия с учетом работы системы водоотлива и объем затопленной части помещения при заданном уровне воды.

Данные расчетов следует учитывать при проектировании основных водоотливных установок.

10 Воздухоснабжение

- 10.1 В сооружениях метрополитена, приспосабливаемых под укрытие, предусматривается воздухоснабжение по режиму чистой вентиляции, без дополнительной очистки воздуха.
- 10.2 В сооружениях метрополитена, приспосабливаемых под ПРУ, предусматривается приточновытяжная вентиляция с механическим побуждением. Количество наружного воздуха, подаваемого в ПРУ на одного укрываемого, следует принимать в соответствии с требованиями СП 88.13330.

Общее количество воздуха, удаляемого из ПРУ системами вентиляции с механическим побуждением, должно составлять 0.9 объема приточного воздуха.

- 10.3 В сооружениях метрополитена, приспосабливаемых под убежище, следует предусматривать децентрализованную систему воздухоснабжения, состоящую из установок тоннельной вентиляции согласно СП 120.13330 и фильтровентиляционных установок для каждого участка автономного жизнеобеспечения.
- 10.4 Воздухоснабжение УАЖ следует обеспечивать в режимах чистой вентиляции, фильтровентиляции и полной изоляции. Длительность режимов ЧВ, ФВ и ПИ следует принимать согласно техническому заданию.
- 10.5 УАЖ в режимах ЧВ, ФВ и ПИ изолируются от внешней среды и от смежных УАЖ защитногерметическими затворами, а используемые в этих режимах вентиляционные тоннели дополнительно оборудуются клапанами — отсекателями ударной волны (волногасителями) на задаваемую расчетную нагрузку.

Вентиляционные каналы, связанные с внешней средой и не используемые в указанных режимах, ограждаются защитно-герметическими затворами или герметическими клапанами.

Воздухоснабжение УАЖ следует предусматривать при закрытых межотсечных затворах. Для перепуска воздуха из отсека в отсек у затворов следует предусматривать обводные каналы с установкой в них клапанов-отсекателей и затворов (приложение A).

10.6 Режим ЧВ используется до применения поражающих факторов и после их применения в зависимости от состояния воздушной среды на поверхности у воздухозаборных устройств. Подача наружного воздуха должна осуществляться вентиляторами ФВУ с очисткой воздуха в противопыльных фильтрах.

В режиме ФВ наружный воздух очищается в противопыльных фильтрах и фильтрах-поглотителях от аварийно химически опасных веществ, отравляющих веществ, радиоактивных веществ и бактериальных средств.

10.7 Для каждого УАЖ в режиме ПИ допустимое время пребывания укрываемых людей на постоянном объеме внутреннего воздуха с рециркуляцией устанавливается расчетом. Условия пребывания укрываемых на постоянном объеме предусматриваются для случаев, при которых невозможно поддер-

СП 263.1325800.2016

жание в отсеках допустимых параметров воздушной среды в режимах ЧВ и ФВ (например, при массовых пожарах). Содержание углекислого газа для условий постоянного объема не должно превышать 5 %.

Расчетные параметры воздуха в сооружениях в режиме убежища следует принимать по таблице 10.1, рекомендуемые нормы утечек воздуха из отсека — по таблице 10.2, количество выделяемого одним человеком тепла, влаги, углекислого газа и потребление кислорода — по таблице 10.3.

Таблица 10.1

Паналити	Режимы			
Параметры	ЧВ	ФВ	ПИ	
Температура воздуха в конце вентилируемого участка к концу расчетного срока пребывания укрываемых, °С	30	30	32	
Относительная влажность воздуха, %	Не нормируется			
Содержание кислорода (O ₂), %, не менее	18	18	17	
Содержание углекислого газа (СО ₂), %, не более	2	2	5	
Содержание окиси углерода (CO), мг/м ³ , не более	50	100	100	
Давление воздуха в отсеках, Па:				
минимальное	200	200	_	
максимальное	20 000	20 000	_	

Таблица 10.2

Место утечки воздуха	Утечка, м ³ /ч, на 1 км двухпутного тоннеля при подпоре , Па					
	200	400	600	800		
Ограждающие конструкции:						
мелкое заложени е	1000	2000	3000	4000		
глубокое заложен ие	250	500	750	1000		
неплотности в защитных устройствах	1250	1800	2250	2600		
Суммарные утечки:	Суммарные утечки:					
мелкое заложение	2250	3800	5250	6600		
глубокое заложение	1500	2300	3000	3600		

Таблица 10.3

Denouern	При на:	При нахождении		
Параметр	на станции	в тоннелях	на поверхность	
Выделение тепла (полное), Вт/чел	120	132	180	
Выделение углекислого газа (СО2), л/ч-чел	20	25	50	
Выделение влаги, г/ч-чел	95	110	170	
Потребление кислорода (O ₂), л/ч·чел	25	30	60	

П р и м е ч а н и е — Начальную расчетную концентрацию углекислого газа на станциях и в тоннелях следует принимать равной 0,4 %.

^{10.8} Для воздухоснабжения командных пунктов КПС, КПОПБС, КПУ, КПОПБУ в режиме убежища следует использовать воздух, забираемый из отсеков, а температурный режим поддерживать местными кондиционерами.

- 10.9 Норму подачи воздуха в режимах ЧВ и ФВ следует принимать от 2 до 10 м³/ч на одного укрываемого человека в зависимости от климатической зоны, с учетом потерь воздуха через неплотности в защитных устройствах.
- 10.10 Подпор воздуха в сооружении в режиме убежища принимается за счет превышения подаваемого воздуха над удаляемым, равным для режима ФВ не менее 50 Па, а для режима ПИ не менее 20 Па.
- 10.11 Скорость воздуха в режимах ЧВ, ФВ следует устанавливать не менее 1 м/с и не более 8 м/с. Для этого при необходимости следует предусматривать принудительную рециркуляцию воздуха с использованием установок тоннельной вентиляции и вентиляторов в сбойках между тоннелями или увеличивать производительность ФВУ.
- 10.12 В случае если расчетная температура воздуха в тоннелях превышает нормируемую, следует применять дополнительные меры по поддержанию установленных параметров воздуха.
- 10.13 В режимах ЧВ, ФВ отработанный воздух удаляется в атмосферу через воздуховыпускные устройства, оборудованные затворами и клапанами-отсекателями. При разветвленной системе воздухоснабжения участка в воздуховыпускных устройствах следует применять регуляторы расхода воздуха, как правило, с ручным управлением.

При обосновании следует предусматривать резервные воздуховыпуски: на участках мелкого заложения — у каждого межотсечного затвора; на участках глубокого заложения — у подрусловых затворов и затворов перед переходными участками со стороны подачи воздуха.

Для шлюзов следует предусматривать устройства воздухоснабжения с поддержанием минимального подпора в них и обводные камеры у шлюзовых затворов.

10.14 В туалетах для укрываемых людей следует предусматривать систему вытяжной вентиляции с удалением воздуха в тоннель с очисткой его в купромитовых фильтрах. В мирное время удаление воздуха из туалетов на станциях следует осуществлять на поверхность, минуя фильтры. Для станций глубокого заложения при обосновании допускается предусматривать удаление воздуха в тоннель с использованием фильтров.

Вентиляционные стояки канализационной сети и фекального резервуара следует присоединять к вытяжной системе вентиляции туалета через купромитовые фильтры.

Количество воздуха, удаляемого из туалета, следует принимать равным 50 м³/ч на одну напольную чашу или унитаз и 25 м³/ч на 1 м лоткового писсуара.

В насосных туалетах, размещаемых на перегонах, следует предусматривать электрическое отопление.

10.15 В УАЖ следует предусматривать автоматический контроль параметров внешней и внутренней среды, а также автоматическое и дистанционное управление защитно-герметическими затворами и вентиляторами тоннельной вентиляции.

Система автоматического контроля должна обеспечивать:

- постоянный контроль температуры, влажности и содержания диоксида углерода в воздухе отсека (тоннеля);
- постоянный контроль температуры, содержания OB, PB, оксида углерода и при наличии задания AXOB и опасных продуктов горения при массовых пожарах в приточном (наружном) воздухе.

Системы управления затворами и вентиляторами УТВ должны обеспечивать:

- дистанционное управление затворами и вентиляторами приточных УТВ из КПС с обязательным световым и звуковым сигналами в местах установки устройств;
- автоматическое отключение вентиляторов и закрытие затворов при поступлении сигнала от датчиков о превышении допустимых пределов температуры и перечисленных веществ.

Время закрытия затворов с момента поступления сигнала от датчика не должно превышать 1,5 мин. с учетом выдержки времени после отключения вентиляторов не менее 30 с.

Типы датчиков и места их размещения следует определять в задании на проектирование.

10.16 Воздухозаборные устройства ФВУ следует располагать вне зон возможного распространения завалов, определяемых согласно СП 165.1325800, а также вне зон затопления.

завалов, определяемых согласно СП 165.1325800, а также вне зон затопления. — Для забора воздуха в режимах ЧВ, ФВ и ПИ следует использовать одни и те же воздушные каналы.

10.17 Допускается размещать ФВУ вблизи ДЭС, а также совмещать ДЭС и ФВУ в единый центр жизнеобеспечения. При этом киоск воздухозабора ФВУ следует располагать на расстоянии не менее 10 м от киоска вытяжных систем вентиляции ДЭС и на расстоянии, определяемом расчетом, но не менее 60 м от оголовка газовыхлопа дизелей.

Киоск воздухозабора не допускается размещать в радиусе 100 м от складов лесоматериалов, горючих и смазочных материалов, автозаправочных станций.

11 Водоснабжение, водоотвод, канализация

11.1 Водоснабжение

11.1.1 Систему водопровода для обеспечения хозяйственно-питьевых, технологических и противопожарных нужд УАЖ следует предусматривать согласно СП 120.13330.

В качестве источника водоснабжения следует использовать сеть городского водопровода, защищенные водозаборные скважины или запасные емкости воды. Системы водоснабжения следует предусматривать с учетом особенностей их работы при повседневной деятельности и режиме автономности.

Водозаборные скважины следует располагать по возможности в междупутье или с внешней стороны тоннелей. Допускается вынос водозаборных скважин на расстояние не более 50 м от тоннеля с устройством между ними соединительных ходков.

При одной рабочей скважине следует предусматривать одну резервную скважину, при большем числе рабочих скважин — две резервные скважины.

11.1.2 Целесообразность устройства, расположение и тип запасных емкостей воды следует определять на основании расчетов с учетом местных условий и технологических требований. Общий объем емкостей в зависимости от их назначения следует определять, исходя из объемов расходного, неприкосновенного противопожарного и аварийного запасов воды.

Емкости воды следует выполнять из металла или железобетона с металлической облицовкой и с антикоррозионной защитой внутренней поверхности.

11.1.3 Вода для питьевых нужд при использовании водопровода должна соответствовать СанПиН 2.1.4.1074.

Потребность в воде на хозяйственно-питьевые нужды укрываемых людей следует определять из расчета 25 л в сутки на одного человека, в том числе питьевой воды — 2 л в сутки.

- 11.1.4 Для питьевых целей на платформах станций и в перегонных тоннелях следует предусматривать водоразборные краны. Число водозаборных кранов в отсеке следует определять из расчета по одному на 200 человек. В перегонных тоннелях водоразборные краны устанавливают не более чем через 30 м.
- 11.1.5 В тоннельном водопроводе при пересечении межотсечных защитно-герметических затворов с обеих сторон следует предусматривать задвижки с ручным управлением, при пересечении затворов, отделяющих отсеки от внешней среды, с одной стороны, в защищенной зоне.

11.2 Водоотвод

- 11.2.1 Удаление грунтовых и сточных вод из отсеков следует осуществлять по системе водоотвода, предусмотренной СП 120.13330.
- 11.2.2 На самотечных трубах под защитно-герметическими затворами в вентиляционных и кабельных шахтах в защищенной зоне следует устанавливать задвижки с электроприводом.

У затворов в перегонных тоннелях глубокого заложения, а также у затворов, выделяющих подречные участки на мелком заложении, следует предусматривать основные ВОУ со стороны притока грунтовых вод.

У межотсечных затворов в перегонных тоннелях мелкого заложения перепуск воды следует предусматривать через лотковый клапан затвора.

У затворов, устанавливаемых в перегонных тоннелях, перед механизмом герметизации лотка следует предусматривать отстойные колодцы и сетчатые заграждения.

11.2.3 Для основных ВОУ, размещаемых в отсеках тоннелей глубокого заложения, следует предусматривать резервные трубопроводы, присоединяемые к городской сети дождевой или общесплавной канализации на расстоянии не менее 400 м от места присоединения к ней основного трубопровода. Резервный трубопровод ВОУ допускается присоединять к основному трубопроводу другой ВОУ, если расстояние между ними составляет не менее 400 м.

На трубопроводах перед выводом их на поверхность следует предусматривать задвижки в пределах защищенной зоны. Напорные трубопроводы следует рассчитывать на давление во фронте ударной волны на поверхности.

11.3 Канализация

11.3.1 На станциях и в перегонных тоннелях, приспосабливаемых под убежище, должны быть туалеты с мужским и женским отделениями, рассчитанными на равное количество мужчин и женщин.

На станции следует предусматривать один туалет, в перегонных тоннелях — туалеты не менее чем через 500 м.

11.3.2 В туалетах, используемых в военное время, в качестве санитарных приборов следует применять напольные чаши с централизованной промывкой водой. В туалетах, используемых также и в мирное время, для каждого санитарного прибора следует предусматривать индивидуальное смывное устройство.

Число санитарных приборов в туалетах следует принимать:

- а) на станциях один прибор на 75 женщин и 150 мужчин; кроме того, 0,6 м лоткового писсуара на два прибора для мужчин;
- б) на перегонах один прибор на 100 женщин и 200 мужчин; кроме того, 0,6 м лоткового писсуара на два прибора для мужчин.
- 11.3.3 Сточные воды от санитарных приборов следует отводить в приемные резервуары канализационных установок. Объем резервуара следует рассчитывать, исходя из восьмичасового притока сточной жидкости, определяемого из расчета 5 л в сутки на одного укрываемого.

В канализационных установках следует предусматривать по два насоса (рабочий и резервный).

11.3.4 На трубопроводах перед выводом их на поверхность следует устанавливать задвижки в пределах защищенной зоны. Напорные трубопроводы следует рассчитывать на давление во фронте ударной волны на поверхности в соответствии с 7.2.4.

12 Электроснабжение

- 12.1 Электроснабжение эскалаторов, вентиляционных, насосных и осветительных установок УАЖ в режиме убежища, ПРУ и укрытия следует предусматривать от ТПП и ПП по электрическим сетям согласно СП 120.13330.
- 12.2 Питание электроустановок ФВУ, ДЭС, КПМ следует обеспечивать от собственных понизительных подстанций согласно СП 120.13330, за исключением отдельных требований, оговоренных в настоящем своде правил.

Электроснабжение подстанций ФВУ, ДЭС, КПМ в мирное время следует предусматривать от ближайших ТПП по питающим линиям напряжением 10 кВ.

Электроснабжение ФВУ при обосновании допускается предусматривать от ближайшей подстанции по электрическим сетям напряжением 380/220 В.

12.3 Электроснабжение ТПП и ПП участков автономного жизнеобеспечения при отключении городских источников питания следует предусматривать от ДЭС по электрическим сетям 10 кВ с максимальным использованием высоковольтной сети метрополитена.

При питании подстанций от ДЭС допускается неселективное действие релейных защит.

- 12.4 Питание электроэнергией подстанций от ДЭС следует обеспечивать по двум независимым кабельным линиям, каждую из которых рассчитывать на питание всех потребителей, работающих при использовании метрополитена в режиме убежища, ПРУ и укрытия. При этом в расчете следует учитывать питание одного эскалатора на станциях, предназначенных для эвакуации укрываемых людей.
- 12.5 Систему электроснабжения в режиме убежища, ПРУ и укрытия следует оборудовать защитами от воздействия всех расчетных поражающих факторов, включая защиту от электромагнитных импульсов.
- 12.6 Системы электроснабжения напряжением 10 кВ смежных УАЖ данной линии, а также УАЖ разных линий, в состав которых входят пересадочные станции, следует соединять резервными перемычками.
- 12.7 Токораздел между участками питания установок от двух смежных подстанций следует принимать по межотсечным затворам и затворам, отделяющим защищенный участок линии от внешней среды.
- 12.8 Питание и управление электроприводами защитно-герметических затворов следует предусматривать от двух независимых источников с АВР.

Питание электроприводов герметических клапанов и задвижек следует предусматривать от одной линии. Допускается подключение этих потребителей шлейфом.

Электроустановки, используемые только в режиме убежища, допускается присоединять к общим магистральным линиям напряжением 380/220 В, применение которых регламентировано СП 120.13330.

12.9 В помещениях на станциях и в перегонных тоннелях, где размещаются электрооборудование или пульты управления дополнительных устройств, следует предусматривать аварийное освещение с присоединением к общей сети аварийного освещения этих сооружений. Питание аварийного освещения защищенной и незащищенной зон сооружений следует предусматривать по раздельным группам.

Группу аварийного освещения незащищенной зоны сооружения допускается подключать к распределительным пунктам силовой сети данного сооружения.

- 12.10 Для электроустановок, работающих в режиме убежища, ПРУ и укрытия следует применять оборудование и аппаратуру общепромышленного изготовления. Крепление оборудования к конструкциям следует предусматривать, исходя из нагрузок, возникающих при смещении сооружения в результате расчетного воздействия поражающих факторов.
- 12.11 Минимальный уровень освещенности помещений в режиме убежища, ПРУ и укрытия следует принимать по таблице 12.1, других помещений по СП 52.13330 (см. также [7]).

Таблица 12.1

Помещение	Плоскость нормирования освещенности	Горизонтальная освещенность, лк	
Подземная станция:			
- вестибюль	Vacaciii Bollo	10	
- платформенный и средний залы	Уровень пола	10	
- переход			
- салон вагона поезда	0,8 м от пола	10	
- медпункт	0,8 м от пола	50	
- туалет	0,8 м от пола	10	
Перегонный тоннель	Уровень головок рельсов	2,5	
Пути эвакуации	Уровень пола	2,5	

Освещение салонов вагонов поездов, размещаемых на станции, следует осуществлять переносными светильниками, для подключения которых следует предусматривать штепсельную группу осветительной сети под козырьком платформы.

13 Связь

- 13.1 Для обеспечения работы метрополитена в режиме убежищ или ПРУ следует использовать виды связи согласно СП 120.13330, применять дополнительные виды оперативно-технологических связей по приложению Б настоящего свода правил, а также следующие виды местных связей:
 - а) прямую связь КПС с КПС соседних станций;
- б) станционную связь КПС с постами у затворов, с санпропускниками эвакуационных выходов, с КПОПБС и КПШ, входящими в его зону обслуживания:
 - в) местную связь ДЭС с внутренними рабочими местами;
 - г) местную связь ФВУ с внутренними рабочими местами;
 - д) местную связь КПШ с постами у шлюзовых затворов;
 - е) переговорные устройства между внутренней и внешней зонами санпропускников.
- 13.2 В КПМ следует предусматривать устройство для оперативного переключения цепей линейных оперативно-технических связей (диспетчерских, тоннельной, поездной радио, АТС и электрочасов) с наземных диспетчерских пунктов линий на дублирующие диспетчерские пункты КПМ. Для обеспечения такого переключения прокладку магистральных кабелей связи следует предусматривать через КПМ.
- 13.3 Для информации укрываемых людей и персонала на станциях, в перегонных тоннелях, в других помещениях и сооружениях УАЖ следует использовать громкоговорящее оповещение:
 - а) из КПМ по всем станциям и перегонным тоннелям;
 - б) из КПС по всем зонам станции и прилегающим тоннелям;
 - в) из КПОПБС (с разрешения КПС) по всем зонам станции и прилегающим тоннелям;
 - г) из КПШ по шлюзовой камере;
 - д) из КПД по помещениям ДЭС;
 - е) из КПФ по помещениям ФВУ.

Средства оповещения для приема сигналов оповещения гражданской обороны и дистанционного управления включением сирен на станциях следует предусматривать в КПМ.

Оборудование дистанционного включения сирен следует устанавливать в КПС.

- 13.4 В КПУ следует предусматривать эфирную радиосвязь с соседними КПУ линии, с КПМ, с ЗКП ГО и ЧС города и загородной зоны.
- 13.5 В КПМ следует предусматривать городской радиотрансляционный ввод, а также прямую факсимильную связь с ЗКП ГО и ЧС города и загородной зоны.
 - 13.6 В командных пунктах следует обеспечивать средства связи со следующими абонентами:
 - а) в КПД с диспетчерами электроснабжения и электромеханических устройств;
 - б) в КПФ с диспетчером электромеханических устройств;
 - в) в КПС с диспетчерами аналогично ДПС по СП 120.13330.
- 13.7 Для возможности организации радиосвязи с наземными службами города следует предусматривать линию станционной радиосвязи.
- 13.8 Каналы дополнительных видов связи следует учитывать в магистральных кабелях связи, проектируемых по СП 120.13330.
- 13.9 Для обеспечения работы метрополитена в режиме укрытия следует предусматривать следующие виды местных связей:
 - а) прямую связь КПС с КПС соседних станций;
- б) станционную связь КПС с постами у затворов (при необходимости), эвакуационных выходов, с КПОПБС, входящими в его зону обслуживания.

14 Управление, автоматизация

- 14.1 Оперативное управление работой метрополитена в военное время следует предусматривать из КПМ.
- 14.2 Для организации оперативного управления работой УАЖ следует предусматривать командные пункты участков линий, станций, ДЭС и ФВУ, а также посты у межотсечных и шлюзовых затворов.

На каждой линии метрополитена при подтверждении в задании следует организовывать командный пункт линии. В качестве КПЛ следует назначать один из КПУ линии с приданием ему дополнительных функций согласно заданию.

В состав КПУ и КПС должны входить соответствующие командные пункты частей охраны порядка и безопасности, проектирование которых следует предусматривать на основании отдельного задания.

14.3 КПУ следует размещать в блоке производственных помещений одной из станций, как правило, без путевого развития.

В составе КПУ должны быть: диспетчерская — 12—15 M^2 , релейная — 18—20 M^2 , аппаратная эфирной радиосвязи — 15 M^2 .

КПОПБУ следует размещать в помещении площадью 12—15 м², примыкающем к КПУ.

КПС следует размещать на каждой станции и совмещать с ДПС. Площадь релейной ДПС следует определять с учетом потребности КПС.

КПОПБС следует размещать на каждой станции в помещении дежурного по станции, примыкающем к КПС.

КПШ следует размещать в КПС.

Размеры помещений КП допускается уточнять, исходя из габаритов применяемого оборудования и площади, необходимой для его обслуживания и размещения персонала.

14.4 Непосредственное управление устройствами защиты и жизнеобеспечения, расположенными на станциях и в прилегающих к ним участках перегонных тоннелей, следует предусматривать из КПС.

Командные пункты следует оборудовать пультами дистанционного управления, мнемосхемами устройств, управляемых с КП, и панелями командного управления.

Командное управление следует осуществлять путем подачи световых сигналов-приказов с подтверждением их получения и исполнения сигналами-рапортами. Сигналы-приказы должны светиться в течение всего периода действия данного приказа. Основные сигналы-приказы приведены в таблице 14.1.

Таблица 14.1

Наименование сигнала-приказа	Наименование сигнала-приказа Передает		Вид передачи	
Общая готовность ГО				
Воздушная тревога	шго кпм	Диспетчеры КПМ, КПЛ, КПУ, КПС, КПФ, КПД	Циркулярный	
Закрыть защитные устройства		,,,,		

СП 263.1325800.2016

Окончание таблицы 14.1

Наименование сигнала-приказа	Передает	Принимает	Вид передачи	
Отбой воздушной тревоги			Циркулярный	
Химическая опасность	шго кпм	Диспетчеры КПМ, КПЛ, КПУ, КПС, КПФ, КПД		
Радиационная опасность]	и ю, и ю, и ф, и д		
Фильтровентиляция				
Постоянный объем	Диспетчер КПМ	КПЛ, КПУ, КПС, КПФ, КПД	Циркулярный, выборочный	
Чистая вентиляция]			
Организовать разведку	LUEO IGENA IGENA	Диспетчеры КПМ, КПЛ,	Циркулярный, выборочный	
Транспортный режим	- ШГО КПМ КПУ	КПУ, КПФ, КПД, КПС		
Открыть защитные устройства				
Вывод населения	кпл, кпу	КПС, КПФ, КПД	Циркулярный, выборочный	
Транспортный режим				
Закрыть (открыть) затвор	КПС	ПЗ, ПШЗ	Выборочный	
Шлюзование	I/IIC	I/PIII	D. G. T. L. L. L. X	
Прекратить шлюзование	КПС	кпш 	Выборочный	
Закрыть (открыть) затвор при шлюзовании	кпш	ПШЗ	Выборочный	
Внимание	Передается одновременно с другим сигналом-приказом и при необходимости сопровождается звуковым сигналом			

- 14.5 Из КПС следует предусматривать дистанционное управление и сигнализацию положения следующих устройств, обеспечивающих защиту и герметизацию отсека:
- затворами в вестибюлях и предэскалаторных залах станций, в переходах между станциями, в перегонных тоннелях и шахтах;
 - герметическими клапанами;
 - задвижками.

Все устройства с электроприводом должны иметь местное управление и сигнализацию.

На пульте КПС следует предусматривать дистанционную сигнализацию:

- о включении насосов и аварийном уровне воды в резервуарах ВОУ и станционных канализационных установок;
- об открытом и закрытом положениях затворов, задвижек и люков с ручным приводом, устанавливаемых на линии защиты и герметизации.

На пульте КПУ следует предусматривать сигнализацию о положении шлюзовых затворов.

На постах местного управления затворами следует предусматривать световое табло сигналов-приказов об их открытии или закрытии.

14.6 В КПМ, ДЭС и ФВУ следует предусматривать программное управление устройствами, обеспечивающими их защиту и герметизацию, а также централизованное управление технологическими системами из командных пунктов этих объектов.

В КПС следует предусматривать программное управление устройствами, обеспечивающими защиту и герметизацию станций, пристанционных, притоннельных сооружений и перепуск воздуха из отсека в отсек, кроме затворов в пассажирских помещениях станций и в перегонных тоннелях, насосов водозаборных скважин, а также тоннельных и местных вентиляционных установок.

14.7 Дистанционное управление межотсечным затвором следует предусматривать из КПС станции, расположенной перед затвором по направлению движения поезда, а сигналы о его положении передавать также в КПС смежной станции.

Управление затворами, отделяющими с одной стороны оба тоннеля подречного участка, и портальными затворами следует осуществлять из КПС ближайшей станции данного отсека, управление шлюзовыми затворами в процессе эвакуации людей — из КПШ.

- 14.8 Схему управления перегонными затворами следует увязывать со схемами устройств управления движением поездов.
 - В схемах следует учитывать возможность управления затворами в трех режимах:
- а) первый режим узел увязки схем отключен, и блокировка затворов с устройствами управления движением поездов осуществляется посредством замков системы Мелентьева, при этом возможно только местное управление:
- б) второй режим замки системы Мелентьева отключены, и блокировка осуществляется с использованием узла увязки схем, при этом возможно только местное управление по команде, передаваемой дистанционно:
- в) третий режим все блокировки с устройствами управления движением поездов отключены, возможно местное и дистанционное управление.
- 14.9 Схема управления шлюзовыми затворами в режиме «Шлюзование» должна иметь блокировку, предотвращающую возможность их одновременного открытия.
- 14.10 В ДЭС и ФВУ следует предусматривать автоматический перевод работы вентиляционных систем в переходный режим при появлении сигнала о превышении ПДК вредных веществ в воздухе от системы дистанционного контроля приточного (наружного) воздуха.
- 14.11 В КПС для контроля температуры, влажности и содержания СО, СО₂ в воздухе на станции и в тоннелях следует использовать системы контроля параметров воздуха, разработку которых выполняют согласно СП 120.13330.

При необходимости данная информация передается в КПУ по каналам телефонной связи.

14.12 Устройство теленаблюдения на других объектах метрополитена, включая подвижной состав, а также необходимость передачи телеизображения отдельных зон наблюдения в ДПЛ (в ситуационный центр) необходимо отражать в задании на проектирование.

15 Пожарная безопасность

15.1 Общие положения

- 15.1.1 Требования по обеспечению пожарной безопасности сооружений метрополитена приведены в [1] и других нормативных документах по пожарной безопасности метрополитенов.
- 15.1.2 Помещения сооружений должны быть категорированы по взрывопожарной и пожарной опасности в соответствии с СП 12.13130.

15.2 Противопожарные требования к объемно-планировочным решениям и ограничению распространения пожара в пожарном отсеке, сооружении

- 15.2.1 Для ограничения распространения пожаров, обеспечения условий их тушения, защиты людей от опасных факторов пожара (ОФП) объект должен быть разделен на пожарные отсеки. Объем каждого пожарного отсека в КПМ, помещений ДЭС и ФВУ следует предусматривать не более 5000 м³, но в каждом сооружении должно быть не менее двух отсеков. В отдельных случаях при технологической необходимости и соблюдении требований пункта 1.6 СП 112.13330 объемы отсеков могут быть увеличены.
- 15.2.2 Каждый пожарный отсек, где предусмотрены постоянные рабочие места, должен иметь не менее двух рассредоточено расположенных эвакуационных выходов. Эвакуационные выходы должны вести наружу, в смежный пожарный отсек, или один наружу и один в смежный пожарный отсек.

Допускается оборудовать один эвакуационный выход и один аварийный выход в тупиковых пожарных отсеках и пожарных отсеках без постоянных рабочих мест.

- 15.2.3 При пересечении противопожарными стенами эвакуационных путей на границах пожарных отсеков должны быть устроены тамбуры с двумя дверями: со стороны отсека противопожарная, со стороны пути эвакуации герметическая. Тамбур на границе одинаковых по всем показателям пожарных отсеков допускается устраивать по усмотрению проектировщиков.
- 15.2.4 При размещении в одном отсеке взрывоопасных и пожароопасных помещений следует предусматривать мероприятия по предупреждению взрыва и предотвращению распространения пожара. Помещения категорий А и Б должны отделяться друг от друга, а также от помещений категорий В1—В4, Г и Д и коридоров противопожарными стенами и перекрытиями с пределом огнестойкости не менее REI 150.

- 15.2.5 Резервуары с ЛВЖ и ГЖ следует размещать в обособленном помещении, отделенном от коридора тамбуром с одной противопожарной и одной герметической дверью. Запрещается устраивать выход из топливохранилища непосредственно во взрывоопасные помещения, а также в помещения распределительных устройств. Требования к системе вентиляции в соответствии с 15.6 и [1].
- 15.2.6 Резервуары ЛВЖ и ГЖ должны быть оборудованы специальной дыхательной системой, позволяющей производить выпуск паров ЛВЖ и ГЖ из резервуаров за пределы помещений, в которых они установлены. Выпуск паров ЛВЖ и ГЖ должен осуществляться в отдельные трубопроводы, в которые должен подаваться воздух от системы вентиляции для разбавления паров до концентраций ниже нижнего предела распространения пламени. В этом же трубопроводе должны быть расположены устройства, препятствующие распространению пламени. Выпуск паров ЛВЖ и ГЖ в помещения, где расположены резервуары, запрещается.
- 15.2.7 Трубопроводы для транспортировки ЛВЖ и ГЖ следует прокладывать в каналах, перекрываемых плитами (крышками) из негорючих материалов. Предел огнестойкости плитки, крышки каналов для кабелей и трубопроводов транспортировки ЛВЖ и ГЖ должен быть не менее EI 90.

Через каждые 75 м, а также в местах пересечения стен и перегородок каналы должны разделяться перегородками из негорючих материалов, препятствующих растеканию жидкости по каналу в случае разрыва трубопроводов. Пределы огнестойкости перегородок канала в местах пересечения ограждающих конструкций помещений должны быть одинаковы с пределами огнестойкости последних. Все каналы должны иметь приямки для удаления возможных проливов.

Допускается прокладывать трубопроводы для транспортировки ЛВЖ и ГЖ открыто в пределах машинного зала дизельной электростанции.

Допускается не оборудовать расположенные в тоннелях, потернах, ходках трубопроводы для подачи топлива каналами при соблюдении следующих требований:

- трубопровод используется периодически для заправки топливом резервуаров;
- трубопровод после окончания заправки следует опорожнять и продувать воздухом;
- процесс заправки (подачи топлива) следует проводить в соответствии с организационно-техническими требованиями по обеспечению пожарной безопасности, предусмотренными в соответствующих нормативных документах;
- для сбора пролива должна быть предусмотрена аварийная емкость, расположенная вне зоны возможного развития пожара. При этом тоннель (ходок, потерна) должен иметь уклон в сторону этой емкости.
- 15.2.8 Трубопроводы должны быть выполнены из бесшовных труб, только на сварке и должны иметь запорные устройства для отключения поврежденных участков. Расстояние между запорными устройствами определяют из условий минимизации последствий пожара за счет сгорания топлива в поврежденном трубопроводе. Открытые трубы должны быть защищены от механических повреждений.

Допускается выполнение разъемов в местах подсоединения оборудования и запорной арматуры.

- 15.2.9 Кабельные линии следует прокладывать в кабельных каналах, тоннелях, шахтах, фальшполах, коробах, помещениях ввода кабелей и т. п. Ограждающие самонесущие конструкции кабельных каналов должны иметь предел огнестойкости не менее El 90, а ограждающие несущие конструкции не менее REI 90.
- 15.2.10 В кабельных проходных каналах через каждые 150 м следует устраивать несгораемые перегородки и противопожарные двери с пределами огнестойкости не менее EI 90. Каждый такой отсек должен иметь систему вентиляции и дымоудаления.

15.3 Требования к огнестойкости и пожарной опасности строительных конструкций

- 15.3.1 Степень огнестойкости, класс конструктивной пожарной опасности и величины пределов огнестойкости строительных конструкций, сооружений и отсеков следует предусматривать в соответствии с требованиями СП 120.13130 и [1].
- 15.3.2 Наземные сооружения инфраструктуры метрополитена: ОЗЭП, здания и сооружения электродепо и наземные здания другого назначения следует предусматривать не ниже степени огнестойкости II и иметь класс конструктивной пожарной опасности не ниже C1.
- 15.3.3 Подземные и наземные сооружения метрополитена: станционные комплексы, вестибюли, перегоны, галереи, эстакады, притоннельные сооружения следует предусматривать класса конструктивной пожарной опасности не выше СО.
- 15.3.4 Обходные кабельные тоннели на станциях следует разделять на участки длиной не более 150 м противопожарными перегородками 1-го типа. Также следует отделять противопожарными

перегородками 1-го типа в месте их примыкания к станции, перегонным тоннелям и НВУ. Двери в перегородках должны быть противопожарные маятниковые дымогазонепроницаемые с пределом огнестойкости не менее EIS 45.

- 15.3.5 При пересечении противопожарных и других внутренних стен и перекрытий различными коммуникациями зазоры между коммуникациями и стенами и перекрытиями следует заделывать наглухо строительным раствором или огнезащитными материалами на всю толщину строительной конструкции, не снижающими предела огнестойкости конструкций.
- 15.3.6 Мебель и другой инвентарь помещений должны быть выполнены из негорючих несущих элементов и иметь индекс НГ по ГОСТ 30244, за исключением специально выделенных помещений. При этом в обязательном порядке должны быть выполнены компенсирующие мероприятия по обеспечению их противопожарной защиты.

15.4 Требования к системам электроснабжения

15.4.1 Требования пожарной безопасности к системам электроснабжения сооружений следует определять в соответствии с 15.1.1.

Электроснабжение сооружений должно осуществляться от независимых внешних источников электроснабжения и от системы автономного электроснабжения.

Нижеприведенные требования относятся к периоду функционирования объекта от внешних источников электроснабжения или во время работы ДЭС.

В период автономного электроснабжения (от установок аккумуляторных батарей специального назначения) требования к электроприемникам должны определяться в соответствии с заданием заказчика.

- 15.4.2 Категории надежности электроснабжения электроприемников сооружений следует устанавливать в соответствии с [5].
- 15.4.3 Системы противопожарной защиты (СПЗ) сооружений должны относиться к электроприемникам особой группы первой категории по надежности электроснабжения с использованием кабелей и способов их прокладки, обеспечивающих их работоспособность в условиях пожара в течение времени выполнения данными техническими средствами своих функциональных задач.
- 15.4.4 Для потребителей этой категории должен быть предусмотрен третий независимый источник питания, обеспечивающий работу электроприемников в течение времени, необходимого для выполнения основной задачи. В качестве такого источника могут быть использованы дизельные электростанции.
- 15.4.5 Электроприемники первой категории должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания. К числу независимых источников питания относятся две секции или системы шин одной или двух электростанций и подстанций при одновременном соблюдении следующих двух условий:
- каждая из секций или систем шин в свою очередь имеет питание от независимого источника питания;
- секции (системы) шин не связаны между собой или имеют связь, автоматически отключающуюся при нарушении нормальной работы одной из секций (систем) шин.
- 15.4.6 Питающие кабели от трансформаторных подстанций (ТП) и автономного источника питания до вводно-распределительных устройств (ВРУ), расположенных в электрощитовых для каждого пожарного отсека, должны прокладываться в раздельных выделенных огнестойких каналах (коробах) или выполняться огнестойкими кабелями в соответствии с ГОСТ 31565 и приложением Д.
- 15.4.7 Допускается расположение ВРУ разных пожарных отсеков в помещении главной электрощитовой при условии установки ВРУ в отдельных отсеках электрощитовой с нормируемым пределом огнестойкости. Питающие кабели от ВРУ до электрощитовых каждого пожарного отсека должны прокладываться в раздельных, выделенных в противопожарном отношении огнестойких каналах (коробах) или выполняться кабелями, сохраняющими работоспособность при стандартном температурном режиме пожара по ГОСТ Р 53316.
- 15.4.8 Помещения вводно-распределительных устройств и электрощитовых должны быть выделены противопожарными перегородками с пределом огнестойкости не менее EI 90.
- 15.4.9 Переключение с основного источника электроэнергии на резервный должно быть автоматическим с применением автоматического выключателя резерва (ABP) с автономным питанием.
- 15.4.10 Работоспособность в условиях пожара кабельных линий и электропроводок СПЗ должна обеспечиваться как выбором вида исполнения кабелей и проводов, так и способом их прокладки. Вре-

мя работоспособности кабельных линий и электропроводок в условиях воздействия пожара следует определять в соответствии с ГОСТ Р 53316.

- 15.4.11 Питание электроприемников СПЗ должно осуществляться от самостоятельной противопожарной распределительной сборки (ППРС), имеющей отличительную окраску (красную), с устройством АВР, которая питается от вводно-распределительного устройства или от главного распределительного щита объекта.
- 15.4.12 Не допускается устройство тепловой и максимальной защиты в цепях управления автоматическими установками пожаротушения, отключение которых может привести к отказу работы при пожаре.
- 15.4.13 Запрещается установка устройств защитного отключения (УЗО) в цепях питания электроприемников СПЗ.
- 15.4.14 Кабели и провода СПЗ при групповой прокладке (расстояние между кабелями менее 300 мм) должны иметь показатели пожарной опасности по нераспространению горения ПРГП 1а, ПРГП 1б, ПРГП 2 или ПРГП 3 и показатель дымообразования (снижение светопроницаемости) не ниже ПД 2 по ГОСТ 31565.
- 15.4.15 Кабельные линии и электропроводки СПЗ, прокладываемые замоноличенно или в пустотах строительных конструкций из негорючих материалов, а также в огнестойких коробах, допускается выполнять кабелями или проводами, к которым не предъявляются требования по нераспространению горения и дымообразованию, при этом торцы коробов каналов в пустотах должны быть уплотнены негорючими материалами.
- 15.4.16 Кабельные сооружения должны быть отделены от других помещений и соседних кабельных сооружений негорючими противопожарными перегородками и перекрытиями с пределом огнестой-кости не менее EI 45.
- 15.4.17 Протяженные туннели должны быть разделены на отсеки длиной не более 150 м при наличии силовых и контрольных кабелей и не более 100 м при наличии маслонаполненных кабелей вертикальными перегородками с пределом огнестойкости не менее EI 45, примыкающими к стенам тоннеля и выступающими за пределы кабельной прокладки не менее чем на 0,2 м в сторону от боковой поверхности кабелей. Площадь каждого отсека двойного пола должна быть не более 600 м². Двери в кабельных сооружениях и перегородках с пределом огнестойкости EI 45 должны иметь тот же предел огнестойкости.
- 15.4.18 Кабельные линии и электропроводки должны быть не распространяющими горение и по показателям пожарной опасности иметь класс не ниже ПРГ 1 по [9].

Выполнение этого требования должно быть обеспечено одним или комбинацией следующих способов:

- прокладкой кабелей в соответствии с таблицей Г.1 (приложение Г);
- применением кабелей, не распространяющих горение (класс ПРГП 1a, ПРГП 1б, ПРГП 2, ПРГП 3 по таблице 1 ГОСТ 31565—2012;
- применением разделительных горизонтальных и вертикальных противопожарных огнезащитных перегородок;
- применением не распространяющих горение и огнестойких погонажных электромонтажных изделий (короба, трубы и т. д.);
- применением огнезащитных кабельных покрытий (ОКП) в качестве дополнительного, компенсирующего мероприятия.

15.5 Требования к помещениям с герметизированными аккумуляторами

- 15.5.1 Помещения с герметизированными аккумуляторами должны категорироваться в соответствии с расчетными методиками по взрывопожарной и пожарной опасности и могут подразделяться на категории А и В1—В4 (см. также [11]).
- 15.5.2 Расчеты по определению категории помещений следует проводить для следующих вариантов режима заряда герметизированных аккумуляторов:
- Буферный режим. Аккумуляторы полностью разряжены и постоянно находятся в режиме подзаряда;
 - Циклический режим. Аккумуляторы находятся как в буферном, так и в режиме ускоренного заряда;
- Аварийный режим заряда. Авария в электрической цепи, напряжение заряда аккумуляторов выше предусмотренной производителем. При условии резервирования систем автоматического отключения источника заряда тока время заряда аккумуляторов в аварийном режиме допускается принимать

равным времени срабатывания системы автоматики в соответствии с требованиями СП 1.13130 и следует определять по паспортным данным на установку.

- 15.5.3 При расчете следует учитывать количество водорода, поступившего в помещение, исходя из условия, что водород выделяют элементы всех аккумуляторов, находящихся в помещении.
- 15.5.4 Помещения с герметизированными аккумуляторами допускается не оснащать системой аварийной вентиляции, если по результатам расчетов значение избыточного давления взрыва не превышает 0,05 кПа для ускоренного и аварийного режимов заряда с отключенной вентиляцией или при неиспользовании режима ускоренного заряда для буферного режима заряда аккумуляторов с постоянно работающей системой общеобменной рециркуляционной вентиляции, содержание в притоке которой свежего воздуха должно быть обосновано расчетом.
- 15.5.5 Помещения с герметизированными аккумуляторами должны быть оснащены системой общеобменной рециркуляционной вентиляции с кратностью не менее двух и содержанием свежего воздуха в притоке не менее 20 % об.
- 15.5.6 Если по результатам расчетов избыточное давление взрыва будет более 0,05 кПа и менее 0,5 кПа, помещения с герметизированными аккумуляторами допускается не оснащать системой аварийной вентиляции при условии оборудования их датчиками на предвзрывную концентрацию, сблокированными со звуковой и световой сигнализациями и срабатывающими при 0,1 НКПР по водороду (0,4 % об.). Отключение заряда аккумуляторов допускается проводить вручную.

15.6 Требования к системе вентиляции

- 15.6.1 Проектирование системы вентиляции следует осуществлять с учетом 15.1.1.
- 15.6.2 Помещения категорий В1—В4 должны быть оборудованы системами дымоудаления. В помещениях категорий В1—В3 элементы систем вентиляции и дымоудаления должны иметь предел огнестойкости не ниже EI 90.

Для удаления продуктов горения и тушения после ликвидации пожара допускается применение передвижных дымососов.

15.6.3 Помещение ДЭС должно быть оборудовано отдельной приточно-вытяжной вентиляцией, обеспечивающей очистку поступающего воздуха снаружи.

В помещении ДЭС должна быть предусмотрена отдельная рециркуляционная система вентиляции, обеспечивающая очистку воздуха в помещении от вредных примесей и дыма.

15.6.4 Для кладовых КСМ следует предусматривать отдельные вытяжные вентиляционные установки.

Поступление воздуха необходимо предусматривать из коридоров через клапаны избыточного давления, устанавливаемые в стенах тамбур-шлюзов на входах в тамбур-шлюз из коридора, и отверстия в стенах, разделяющих тамбур-шлюзы и помещения с установкой противопожарных нормальнооткрытых клапанов во взрывозащищенном исполнении с электроприводом и возвратной пружиной.

15.6.5 Вентиляторы вытяжных установок кладовых КСМ необходимо принимать взрывозащищенного типа с взрывозащищенным электродвигателем. На всасывающем участке воздуховода, при входе его в машинное помещение установки, следует предусматривать противопожарный нормально-открытый клапан во взрывозащищенном исполнении с электроприводом, сблокированный с вентилятором.

При возникновении пожара вентилятор должен автоматически отключаться, противопожарный клапан — закрываться. Решение уточняется в зависимости от категории помещения.

Вывод вентиляционного канала вытяжной системы противодымной вентиляции сооружений метрополитена на поверхность следует располагать на расстоянии не менее чем:

- 25 м от наружных стен жилых и общественных зданий;
- 15 м от наружных стен наземных вестибюлей метрополитена;
- 15 м от выходов из подземных пешеходных переходов подземных вестибюлей метрополитена;
- 100 м от границ топливозаправочных станций;
- 15 м от границ лесных насаждений;
- 15 м от границ производственных и складских зданий и сооружений категорий В и Д;
- 10 м от автомобилей на открытых автостоянках.
- 15.6.6 Должно быть предусмотрено создание избыточного давления воздуха в помещениях пультов управления, тамбур-шлюзов, эвакуационных коридорах за счет работы приточной вентиляции и пониженного давления для удаления продуктов горения из помещения ДЭС.
- 15.6.7 Должна быть обеспечена возможность отключения с пульта управления работы вентиляционных систем в загерметизированных после пожара пожарных отсеках.

- 15.6.8 Эвакуационные пути должны быть оборудованы вентиляцией, обеспечивающей безопасную эвакуацию людей из объекта.
- 15.6.9 Должно быть предусмотрено применение вентиляторов вытяжных систем с требуемыми пределами огнестойкости 2 ч при 400 °C и 1 ч при 600 °C (или с повышенными относительно указанных значений пределами огнестойкости по расчетному обоснованию температурных режимов пожара), а также противопожарных нормально-закрытых (огнезадерживающих) клапанов в вертикальных и горизонтальных коллекторах вентиляционных систем.
- 15.6.10 Для повышения предела огнестойкости систем вентиляции и дымоудаления до необходимого значения допускается использование огнезащитных покрытий в виде красок, матов, а также огнезащитных коробов.
- 15.6.11 С учетом действующих ограничений по связи с наружной средой в составе вытяжных систем противодымной вентиляции должно быть предусмотрено применение фильтрационно-очистных устройств для обеспечения режимов частичной или полной рециркуляции.
- 15.6.12 Для наружных поверхностей транзитных участков вентиляционных каналов следует применять огнезащиту с обеспечением пределов огнестойкости их конструкций не менее EI 90.
- 15.6.13 В транзитных вентиляционных каналах на границах отсеков должны быть предусмотрены нормально-открытые противопожарные клапаны, имеющие пределы огнестойкости не менее El 90 и оснащенные автоматически и дистанционно управляемыми приводами (с термоэлементами в их составе).
- 15.6.14 Должен быть обеспечен сброс давления из каждого противопожарного отсека и герметизированных помещений, в которых при пожаре может возникнуть значительное избыточное давление (более 0,2 кПа).
- 15.6.15 Должна быть предусмотрена отдельная система для удаления воздуха из помещения с ИБП.
- 15.6.16 Должна быть предусмотрена отдельная система вентиляции для удаления горячих газов (выхлопов), отходящих от ДЭС.

15.7 Требования к эвакуационным и аварийным выходам, эвакуационным путям

- 15.7.1 Требования к обеспечению эвакуации людей из сооружения при пожаре следует определять с учетом 15.1.1.
- 15.7.2 В соответствии с [1, статья 55] для обеспечения пожарной безопасности укрываемых в сооружении людей должны быть предусмотрены коллективные убежища, оборудованные в соответствии с требованиями, предъявляемыми к противопожарным отсекам:
 - предел огнестойкости противопожарных преград (стен) не менее REI 150;
 - отдельная система вентиляции и дымоудаления;
 - самостоятельный выход на пути эвакуации;
- вход в отсек и выход должны быть оборудованы тамбурами с двумя дверьми противопожарной и герметической.

Кроме того, в помещениях должны быть предусмотрены запасы воздуха и самоспасателей. Горючая нагрузка должна быть ограничена, категория помещения— не выше В4.

15.7.3 СПЗ участков линии с однопутными и двухпутными перегонными тоннелями должны обеспечивать эвакуацию людей из подземных сооружений при пожаре преимущественно системой тоннельной вентиляции. При невозможности достижения целей противодымной защиты с помощью тоннельной вентиляции необходимо применять специальные системы дымоудаления и (или) конструктивные решения по ограничению распространения опасных факторов пожара по длине тоннеля.

На участках линии метрополитена с однопутными тоннелями, а также на участках с двухпутными тоннелями, разделенными глухой вертикальной перегородкой на два транспортных отсека, необходимо предусматривать систему тоннельной вентиляции с раздельным проветриванием перегонных тоннелей.

На участках линий метрополитена с двухпутными тоннелями без разделения на два транспортных отсека необходимо предусматривать систему тоннельной вентиляции с вентиляционным каналом в верхней части тоннеля с дымоприемными отверстиями с шагом не более 100 м.

Параметры СПЗ, необходимые для защиты путей эвакуации от дыма, необходимо определять на основе инженерного анализа в соответствии с СП 120.13330.

15.7.4 Открытая транзитная прокладка кабельных линий в проходных тоннелях, потернах, лестничных клетках и коридорах, являющихся эвакуационными путями, не допускается.

Допускается открытая прокладка кабелей в таких тоннелях при соблюдении следующих требований:

- категория пожарной опасности помещения (тоннеля, потерны, лестничной клетки, коридора) не превышает В4;
- используются огнестойкие кабели с оболочкой из термопластичных эластомеров, не распространяющих горение;
 - кабели проложены в соответствии с 15.4.18.

Если длина пути эвакуации более 200 м, через каждые 100 м должна быть предусмотрена заделка кабелей или обмазка длиной не менее 5 м. Выбор способа предотвращения развития горения по кабельному потоку должен определяться проектировщиком в зависимости от требований эксплуатации.

Для тоннелей и кабельных ходков длиной более 100 м следует предусмотреть заделку кабелей через каждые 100 м, а через каждые 300 м — водяные завесы (рядом с местом заделки).

15.8 Системы противопожарной защиты 3С

15.8.1 Требования пожарной безопасности к системе оповещения и управления эвакуацией людей при пожаре

15.8.1.1 Система оповещения и управления эвакуацией людей (СОУЭ) должна проектироваться в целях обеспечения безопасной эвакуации людей при пожаре. СОУЭ должна отвечать требованиям СП 3.13130 в части, не противоречащей настоящему своду правил.

15.8.2 Требования к автоматическим системам пожарной сигнализации

15.8.2.1 Проектирование автоматических установок пожарной сигнализации и всей системы пожарной сигнализации в целом в сооружениях следует проводить в соответствии с требованиями СП 5.13130 в части, не противоречащей настоящему своду правил.

15.8.3 Требования к установкам пожаротушения

- 15.8.3.1 Автоматические установки пожаротушения (далее установки или АУП) следует проектировать с учетом требований СП 5.13130.
- 15.8.3.2 Помещения сооружений должны быть оснащены водяными АУП или газовыми АУП объемного способа действия. Допускается при технико-экономическом обосновании вместо газовых АУП для хранилищ ГСМ использовать пенные АУП.
- 15.8.3.3 Допускается для наружных зданий использовать водопенные и газовые АУП всех типов при соответствующем обосновании.
- 15.8.3.4 В качестве газовых огнетушащих составов (ГОТВ) в АУП, размещенных в сооружениях, следует использовать хладоны 125 и 227 еа. Для других ГОТВ необходимо обоснование возможности их применения. Применение огнетушащих порошковых и аэрозольных составов в сооружениях запрещено.
- 15.8.3.5 Водяные АУП, используемые в сооружениях, должны быть, как правило, спринклерные и (или) дренчерные с пуском от пожарных извещателей и пожарной сигнализации. Для использования других типов водяных АУП необходимо обоснование.
- 15.8.3.6 В защитном сооружении следует использовать автономные установки пожаротушения со следующими огнетушащими составами: водяные, газовые, комбинированные и с термоактивирующимся составом, выделяющим газовое огнетушащее вещество (ГОТВ).
- 15.8.3.7 Термоактивирующиеся составы, выделяющие ГОТВ, допускается применять для защиты электрооборудования и оборудования связи при условии оснащения помещений, в которых они находятся, автоматическими установками пожарной сигнализации (АУПС). При обосновании допускается не использовать АУГП для защиты помещений связи в случае постоянного пребывания в них персонала.
- 15.8.3.8 Сооружение должно быть оборудовано пожарными кранами, пожарным водопроводом, обеспечивающим подачу в любую точку двух пожарных струй производительностью каждая:
 - 2,5 л/с в отсеках с пожарной нагрузкой до 140 МДж/м² включительно;
 - 5 л/с в отсеках с пожарной нагрузкой более 140 МДж/м².

Расчетное количество одновременных пожаров необходимо принимать:

- один при внутреннем объеме сооружения до 25 тыс. м³ включительно;
- два при внутреннем объеме сооружения более 25 тыс. м³.
- 15.8.3.9 Для автоматических установок водяного или пенного пожаротушения расход воды или водного раствора пенообразователя должен определяться расчетом по действующим федеральным и ведомственным нормам.

Расчетное время тушения пожара следует принимать не менее:

- от пожарных кранов и установками водяного тушения 1 ч;
- пенного тушения 0,25 ч.

Объем резервуаров для хранения воды и пенообразователя определяют из потребного расхода и расчетного времени тушения, при этом запас воды и пенообразователя для тушения должен приниматься двукратным.

Запас воды внутреннего противопожарного водопровода следует хранить в защищенных пожарных резервуарах, расположенных в сооружении или вне его, а для наружного противопожарного водоснабжения — в незащищенных пожарных водоемах.

15.8.3.10 Пожарный водопровод (при тушении пожара водой) допускается объединять с хозяйственно-питьевым и производственным. Напоры у внутренних пожарных кранов должны обеспечивать:

- при тушении пожара водой получение компактных водяных струй высотой, необходимой для тушения пожара в самой высокой и удаленной части сооружения. Минимальную высоту и радиус действия компактной части пожарной струи следует принимать равными высоте помещения, считая от пола до наивысшей точки перекрытия, но не менее 12 м;
 - при тушении пожара пеной устойчивую работу пеногенераторов (0,4—0,6 МПа).

Напор водопроводной сети, питающей установки водяного и пенного пожаротушения, определяется расчетом и должен обеспечивать расчетные расходы воды из оросителей.

Прокладка противопожарных и объединенных с ними водопроводов другого назначения из полимерных труб запрещается.

- 15.8.3.11 Сеть пожарного водопровода должна проектироваться кольцевой из стальных труб и разделяться задвижками на ремонтные участки для одновременного отключения не более пяти пожарных кранов. При проектировании сети пожарного водопровода следует учитывать требования федеральных и ведомственных нормативных документов к трубопроводам водяного и пенного пожаротушения.
- 15.8.3.12 При определении количества и мест расположения пожарных кранов в сооружении следует учитывать следующее:
- тушение пожара в каждой точке помещения объекта должно осуществляться не менее чем двумя струями;
 - на стояках допускается устанавливать спаренные пожарные краны;
 - число струй, подаваемых от одного стояка, должно быть не более двух;
 - кнопки дистанционного пуска пожарных насосов должны располагаться у каждого пожарного крана.
- 15.8.3.13 Для сооружений с внутренним объемом более 25 тыс. м³ допускается предусматривать децентрализованную систему пожарного водоснабжения с разбивкой сооружения на две и более зоны и оборудованием каждой из них самостоятельной системой пожарного водоснабжения. Зонные системы пожарного водоснабжения должны быть взаимосвязаны с целью использования каждой из них для тушения пожара в любой части сооружения.
- 15.8.3.14 Прокладка магистральных и распределительных сетей пожарного водопровода должна предусматриваться открытой. При невозможности открытой прокладки допускается их размещение в общих каналах вместе с другими трубопроводами, кроме трубопроводов для транспортировки ЛВЖ и ГЖ.
- 15.8.3.15 Наличие установок автоматического пожаротушения не исключает устройство внутреннего противопожарного водопровода.
- 15.8.3.16 Должна быть предусмотрена возможность подачи воды от источников наружного водоснабжения передвижной пожарной техникой в сеть внутреннего противопожарного водопровода сооружения.
- 15.8.3.17 Пожарные насосы должны быть оснащены автоматическим, дистанционным и ручным управлением. При автоматическом включении пожарных насосов должен одновременно подаваться сигнал (световой и звуковой) в помещение командно-диспетчерского пункта (КДП) или другое помещение с круглосуточным пребыванием обслуживающего персонала.
 - 15.8.3.18 При автоматическом управлении пожарными насосами должны предусматриваться:
 - автоматическое включение резервного насоса при аварийном отключении рабочего;
 - открывание электрозадвижек одновременно с пуском пожарных насосов.
- 15.8.3.19 В насосной станции пожарного водопровода должен быть предусмотрен один резервный пожарный насос независимо от количества рабочих насосов.
 - 15.8.3.20 При заборе воды из резервуара следует предусматривать установку насосов «под залив».
- 15.8.3.21 При раздельных системах водоснабжения и пожаротушения в сооружениях следует предусматривать возможность использования подземной, дренажной воды и запасов воды систем теплоотведения для пожаротушения и заполнения пожарных резервуаров как дополнение к основному расчетному запасу воды.
- 15.8.3.22 Оборудование сооружений первичными средствами пожаротушения должно быть предусмотрено в технологической части проекта по таблице 15.1.

Таблица 15.1 — Нормы первичных средств пожаротушения

		Огнету	Асбесто-	Ящик	
Наименование помещений	Расчетная единица	Воздушнопенные вместимостью 10 л	Углекислотные вместимостью 5 л	вое по- крывало	с песком и лопаты
Генераторна я , щитовая	На 50 м ²	_	1	_	
Вентиляционная	На 150 м ²	_	1	_	_
Машинное помещение лифта	На помещение	_	1	_	_
Агрегатная	На помещение	_	1		_
Трансформаторная, преобразовательная подстанция	На 50 м ²	_	1	_	_
Помещения дизельной (дизель-генераторной)	На 1 агрегат незави- симо от мощности	1	1	1	1
Компрессорн ая	На помещение	_	2	-	_
Аппаратный зал	На 100 м ²	_	1	-	_
Помещение хол одильных установок	На 400 м ²	_	1	_	_
Расп а ковочная	На 200 м ²	1	_	_	_
Помещение аккумулятор- ных батарей	На 100 м ²	_	1	_	_
Насосная ЛВЖ и ГЖ	На 50 м ²	1	1	1	1
Насосная водопровода	На помещение	_	1	_	
Помещения для хранения баллонов со сжатыми и сжиженными газами	На 200 м ²	1		_	_
Помещение АСУ и ВЦ, залы ЭВМ, хранилища информации, кладовые запасного оборудования, лаборатория КИП и т. п.	На 100 м ²	_	1	_	_
Сливоналивные устрой- ства для ЛВЖ и ГЖ	На комплект	1	_	1	1
Помещение для хранения ЛВЖ и ГЖ	На 100 м ²	2		1	1
Помещения для хранения твердых горючих материалов	На 200 м ²	1	1	_	_
Помещение дежурной смены	На комнату	1	1	_	_
Командно- диспетчерский пункт	На комнату		2	_	_

Окончание таблицы 15.1

Наименование помещений		Огнетуц	Асбесто-	Ящик	
	Расчетная единица	Воздушнопенны е вместимостью 10 л	Углекислотные вместимостью 5 л	вое по- крывало	с песком и лопаты
Коридор сооружения	На 40 пог. м	1	_	_	_
Потерна	На 40 пог. м	_	1	_	_

Примечания

- 1 Отдельные помещения с площадью пола менее предусмотренной нормами, оборудуются огнетушителями по наименьшему измерителю, но не менее одного на помещение. Огнетушители должны иметь сейсмостойкое крепление.
- 2 Количество огнетушителей в помещениях дежурной смены может быть увеличено в два-три раза с целью использования их лицами пожарной команды объекта для тушения пожаров.
- 3 При оборудовании сооружений внутренними пожарными кранами и установками пожаротушения количество огнетушителей принимается по нормам без сокращения.
- 4 При объеме сооружения 10 000 м³ и более и наличии в нем распределительных устройств и аппаратных помещений, кроме средств, указанных в таблице, рекомендуется иметь на каждом этаже по одному передвижному огнетушителю типа ОУ-80 или ОВП-100.
 - 5 Размер асбестового покрывала 1.0×1.5 м, вместимость ящика с песком 0.5 м³.
- 15.8.3.23 В сооружениях объемом до 5000 м³ должно предусматриваться отдельное помещение (пожарный пост) площадью не менее 15 м² для размещения пожарного и горноспасательного оборудования и имущества. В сооружениях объемом более 5000 м³ на каждые 5000 м³ его объема предусматривается отдельное помещение (пожарный пост). Помещение пожарного поста должно быть оборудовано прямой телефонной и диспетчерской связью с КДП сооружения и прямой телефонной связью с пожарной командой объекта.
- 15.8.3.24 При использовании водяных и водопенных АУП следует предусмотреть мероприятия по сбору и (или) эвакуации продуктов тушения.

15.8.4 Перечень помещений, подлежащих оборудованию автоматическими установками пожаротушения и автоматическими установками пожарной сигнализации

- 15.8.4.1 Все помещения сооружения, за исключением помещений санузлов, душевых и с мокрыми технологическими процессами, где не используются электротехнические устройства, должны быть оборудованы пожарными извещателями автоматической установки пожарной сигнализации.
- 15.8.4.2 Пожарными извещателями должны быть оборудованы пространства под фальшполами при наличии в них кабельных линий.
- 15.8.4.3 В кабельных потоках (кабельных линиях) высоковольтных и силовых кабелей должны быть проложены термокабели для определения мест возможных загораний.
- 15.8.4.4 Помещения сооружений категорий A, Б, B1—B3 должны быть оснащены автоматическими установками пожаротушения.
- 15.8.4.5 Помещения категорий А и Б оснащаются автоматическими установками газового пожаротушения только в том случае, если их применение не может способствовать возникновению взрывоопасной ситуации в производственном помещении сооружения.
- 15.8.4.6 Использование водяных установок автоматического пожаротушения допускается в тех производственных помещениях, в которых воздействие воды не может вызвать выхода из строя оборудования связи, электроснабжения и систем жизнеобеспечения. В противном случае их следует защищать от пожара с помощью автоматических установок газового пожаротушения.
- 15.8.4.7 Помещения с аппаратурой связи, оснащенной автономными установками с термоактивирующимся составом, выделяющим газовые огнетушащие вещества, и с постоянным присутствием персонала, допускается не оснащать автоматическими установками пожаротушения.

16 Санитарный пропускник

16.1 Санитарные пропускники убежищ или ПРУ следует предусматривать в сооружениях, которые должны функционировать после воздействия расчетных средств поражения. Не допускается располагать санпропускники с входами в сооружения из наземных зданий, создающих завалы от ударной волны.

16.2 В санпропускнике следует предусматривать санитарную обработку людей с использованием табельных сухих дезинфекционных средств, применяемых, как правило, при системе шлюзования, исходя из пропускной способности 8—10 чел/ч.

Максимальное число людей, входящих через санпропускник, следует определять из условия обеспечения продувки его помещений воздухом, забираемым из чистой зоны объекта.

16.3 В состав санпропускника должны входить помещения согласно таблице 16.1.

Таблица 16.1

Наименование	Площадь, м ²
Защитно-герметический тамбур (тамбур-шлюз)	3—4
Раздевальная	3—4
Кладовая для временного хранения зараженной одежды	4
Одевальная	4
Кладовая дезинфекционных средств	2

Площади помещений допускается уточнять с соблюдением условий компактности размещения оборудования.

Помещения санпропускника по условиям возможного заражения следует подразделять на грязные, условно грязные и условно чистые.

16.4 При входе с поверхности или из грязной зоны следует предусматривать систему шлюзования, обеспечивающую вход (выход) в сооружение в режиме ФВ. При переходе из чистой зоны в грязную следует предусматривать только тамбур. В тамбур-шлюз следует подавать воздух из расчета 25-кратного обмена в час при продолжительности вентилирования 6 мин.

В тамбур-шлюзе следует предусматривать места для хранения зараженной одежды и сухих дегазационных пакетов.

16.5 Все ограждающие конструкции помещений санпропускника, кроме внутренних стен, разделяющих условно чистые зоны, являются границами герметизации.

Ограждающие конструкции грязных помещений должны иметь воздухопроницаемость при подпоре в соответствии с 10.8 не более 2 л/($4 \cdot M^2$), условно грязных и условно чистых помещений — не более 4 л/($4 \cdot M^2$).

- 16.6 Планировка санпропускника должна обеспечивать быстроту и эффективность проведения санитарной обработки людей кратчайшим путем, без возвращения по своему следу для выполнения отдельных операций, хороший обзор проверяемых людей через смотровые окна, удобство размещения оборудования и расположения рабочих постов команды санпропускника, минимальную протяженность инженерных коммуникаций.
- 16.7 Размеры тамбуров в плане должны обеспечивать открывание герметических дверей, не прислоняясь к стенам тамбура.
- 16.8 Размеры дверных проемов по пути движения обрабатываемых людей следует принимать равными 0,8×2,0 м с порогом высотой 0,2 м. Размеры проемов дверей, не предназначенных для прохода обрабатываемых людей, следует принимать минимальными по условиям проноса оборудования в данные помещения.
- 16.9 Высоту помещений следует принимать от 2,2 до 2,5 м. Если общая высота этажа, на котором размещается санпропускник, составляет более 3,5 м, то над его помещениями следует устраивать дополнительное перекрытие, являющееся внешней границей герметизации.
- 16.10 Полы, потолки и стены во всех помещениях не должны иметь швов, должны выполняться из материалов, допускающих их помывку дезинфекционными растворами и горячей водой.

Сопряжение поверхностей полов, стен и потолков помещений следует предусматривать со скруглением углов, полы — с уклоном для стока воды в канализационные трапы. Края полов должны быть подняты на высоту 20 см и заделаны заподлицо со стенами.

Покраску стен и потолков помещений следует предусматривать краской ПВХ в четыре-шесть слоев.

16.11 Параметры микроклимата в помещениях обусловливаются параметрами воздуха, используемого для вентиляции, и строго не регламентируются.

17 Дизельная электростанция

17.1 Объемно-планировочные решения

- 17.1.1 ДЭС в убежищах следует размещать с учетом перспективы ее развития и при возможности предусматривать на участке глубокого заложения.
 - 17.1.2 В состав ДЭС входят следующие блоки помещений:
- а) блок ДГ машинный зал, топливохранилище, насосная топливохранилища, водозаборные установки, мастерская, кладовая, помещения АУПТ и дежурного механика;
- б) понизительная подстанция распределительные устройства, трансформаторы, мастерская, помещение для персонала;
 - в) оборудование источника бесперебойного питания;
 - г) компрессорная установка машинное помещение, реципиентная;
 - д) блок управления КПД, релейные, аппаратные связи;
 - е) системы жизнеобеспечения ФВУ, ВОУ;
- ж) санитарно-бытовые помещения туалеты, комнаты отдыха, приема пищи, спальни, гардеробные, кладовые;
 - и) санпропускник согласно разделу 16.
- 17.1.3 Размещение оборудования должно обеспечивать возможность замены и транспортировки ДГ и другого оборудования через грузовые шахты, ходки и монтажные проемы.
- 17.1.4 Блок ДГ не должен быть проходным для персонала, не имеющего отношения к его обслуживанию.
- 17.1.5 Высоту машинного зала следует предусматривать, исходя из возможности разборки двигателя с применением грузоподъемных устройств, но не менее 2,4 м.

Высоту помещений и проходов следует предусматривать, не менее:

- а) подвала для размещения вспомогательного оборудования 1,8 м;
- б) проходов под площадками и трубами, уложенными над проходами в подвале или в проходном канале, 1,6 м.

Местное сужение высоты проходов допускается:

- а) при пересечении его трубами по верху на протяжении не более 1 м по длине прохода 1,4 м;
- б) при пересечении его трубами по низу на протяжении не более 1 м по длине прохода 1,3 м;
- в) в проходе до нижней точки заделки в стену подкоса кронштейна (для крепления площадки бака и т. п.) при угле подъема не менее 45° 1,5 м.
- 17.1.6 В машинном зале допускается не предусматривать специальную ремонтную площадку при условии, что имеющиеся проходы достаточны для осуществления ремонтных работ, монтажа и демонтажа агрегатов и проводимые работы не мешают обслуживанию действующего оборудования.

17.2 Вентиляция и отопление

17.2.1 Для вентиляции ДЭС в режимах ЧВ и ФВ следует использовать приточный воздух, забираемый с поверхности земли местной ФВУ.

В машинном зале следует предусматривать рециркуляционную воздухоохлаждающую установку.

- В системе вентиляции помещений КПД и дежурного персонала следует обеспечивать режим полной изоляции с регенерацией воздуха продолжительностью 10 ч.
- 17.2.2 Вытяжку воздуха из машинного зала на поверхность следует предусматривать через помещение топливохранилища с поступлением его в помещения склада и насосной ГСМ через отверстия с герметизирующими и огнезащитными устройствами. При этом в помещении топливохранилища следует обеспечить 8-кратный воздухообмена в час. В помещении машинного зала следует обеспечить 1,5-кратный воздухообмен для газоплотных и 3-кратный для негазоплотных дизелей в час.
- 17.2.3 Для поддержания в мирное время в помещениях необходимой температуры и влажности воздуха следует применять электрическое отопление. Допускается применение водяного отопления. Технические решения по теплоснабжению следует принимать согласно СП 120.13330.

17.3 Тепломеханическая часть

17.3.1 Мощность ДЭС следует определять согласно 17.6.1.

Число дизель-электрических агрегатов следует принимать не менее трех, резервные агрегаты не предусматривать. Степень автоматизации ДГ должна быть не ниже второй по ГОСТ Р 54812. Дизели следует применять в газоплотном исполнении, с двухконтурной системой охлаждения.

17.3.2 Для горения топлива в дизелях во всех режимах следует использовать наружный воздух с очисткой его в противопыльных фильтрах.

Для удаления выхлопных газов от дизелей в атмосферу следует предусматривать герметические трубопроводы с глушителями или глушителями-отсекателями. При объединении выхлопных трубопроводов в общую магистраль на трубопроводе каждого дизеля следует устанавливать гермоклапан. Соединение выхлопных трубопроводов в общую магистраль допускается только после глушителя. При установке глушителей-отсекателей другие глушители возможно не предусматривать.

На газовоздушных трактах должны быть клапаны-отсекатели, срабатывающие непосредственно от воздействия воздушной ударной волны.

- 17.3.3 Трубопроводы газовыхлопа в пределах сооружения должны иметь тепловую изоляцию, не выделяющую вредности (CO, CO $_2$ и другие) и обеспечивающую температуру на ее поверхности не выше 60 °C.
- 17.3.4 Расстояние на поверхности земли между газовыхлопной трубой и воздухозабором следует определять расчетом с учетом зоны распространения выхлопных газов от ДГ, но принимать не менее 60 м.
- 17.3.5 На воздушных и выхлопных трубопроводах следует предусматривать компенсаторы термического удлинения трубопроводов, исключающие также влияние вибрации двигателя на трубопроводы и попадание влаги из трубопроводов в дизель.

Разгрузку агрегатов дизеля от сил тяжести и вибрационного влияния выхлопных и воздухозаборных трубопроводов следует принимать по рекомендациям предприятия-изготовителя.

- 17.3.6 Система газовыхлопа должна иметь газоочистную установку, обеспечивающую в мирное время очистку выхлопных газов в зоне выброса до уровня, не превышающего ПДК.
- 17.3.7 Защищенный запас топлива и масла следует принимать из расчета непрерывной работы агрегатов со 100-процентной нагрузкой в течение заданного периода автономности. Защищенный запас ГСМ следует располагать, как правило, в отдельной выработке в торце блока ДЭС. Защищенный запас ГСМ допускается размещать в отдельном сооружении с обеспечением равной степени защиты сооружений и коммуникаций.
- 17.3.8 В хранилище ГСМ для топлива и масла следует применять металлические баки. Допускается применение железобетонных отсеков с внутренней металлической изоляцией.

Число резервуаров для топлива и масла должно быть не менее двух. Объем каждого резервуара следует определять из условия вместимости топлива при аварийном разливе его из одного резервуара. Выход из работы одного резервуара не должен отражаться на возможности использования топлива из других резервуаров.

Залив топлива в резервуары следует предусматривать через сепараторы и фильтры.

Резервуары ГСМ должны иметь указатели уровня и автоматическую сигнализацию максимального и минимального допустимых уровней топлива и масла.

Воздушную дыхательную систему резервуаров топлива и масла следует выводить в вытяжную систему вентиляции, в воздухозабор дизеля или наружу.

Помещение хранилища ГСМ следует отделять от коридора тамбурами с двумя дверями, открывающимися наружу. Дверь со стороны помещения должна быть противопожарной с пределом огнестойкости ЕI 120, другая — герметической. В помещении следует поддерживать температуру не ниже 5 °C.

В дверных проемах следует устраивать пороги с пандусами, высоту которых рассчитывать, исходя из удержания в пределах хранилища горючей жидкости, находящейся в наибольшей емкости, но не менее 15 см.

17.3.9 В случае если расходные баки топлива не входят в комплектную поставку ДГ, следует предусматривать два расходных бака (или один, разделенный на две части), каждый из которых рассчитывать на работу всех агрегатов в течение двух часов.

Пополнение расходных баков следует предусматривать по возможности самотеком.

Расходные баки ГСМ должны иметь переливные трубы, рассчитанные на самотечное движение жидкости при нижнем температурном пределе 5 °С в помещении. Трубы вводятся в бак в месте максимально допустимого уровня. Перелив ГСМ следует предусматривать в баки аварийного слива топлива и масла.

Схема трубопроводов должна обеспечивать возможность удаления ГСМ из емкости наружу.

17.3.10 Для откачки циркуляционного масла дизеля рекомендуется предусматривать резервный бак емкостью, обеспечивающей двухкратную замену масла одного дизеля.

17.3.11 Трубопроводы следует маркировать опознавательной окраской, выполняемой участками длиной не менее четырех диаметров трубы и не реже чем через 10 м. При прокладке трубопроводов в непроходных каналах участки опознавательной окраски наносят в пределах смотровых колодцев.

Цвета опознавательной окраски:

- зеленый трубопроводы системы охлаждения:
- синий трубопроводы сжатого воздуха;
- желтый трубопроводы топлива;
- коричневый трубопроводы масла.
- 17.3.12 Помещение насосной для перекачек ГСМ и грязевых остатков ГСМ следует отделять от других помещений противопожарной перегородкой с противопожарной дверью. Насосы пополнения расходных баков топлива и циркуляционных маслобаков дизелей следует устанавливать, как правило, в насосной ГСМ.
- 17.3.13 Пункт слива ГСМ и помещение газоочистной установки могут находиться в незащищенной зоне.

Для слива топлива и масла из цистерн следует предусматривать сливные устройства закрытого типа и фильтрующие устройства.

- 17.3.14 Все резервуары, трубопроводы и насосные установки ГСМ необходимо заземлять. Помещения для хранения и перекачки топлива следует относить к зонам класса П-1 согласно [5].
- 17.3.15 Для пуска дизелей сжатым воздухом следует предусматривать не менее двух компрессоров. Для пуска дизелей допускается использовать воздух от сети компрессорной установки.
- 17.3.16 Размеры проходов в свету между оборудованием в машинных помещениях и в хранилище ГСМ следует принимать по таблице 17.1.

Таблица 17.1 — Размеры проходов в свету между оборудованием в машинных помещениях и в хранилище ГСМ

Размеры в метрах

Росположение проуспа	Мощность ус	становки, кВт				
Расположение прохода	500—1000	Свыше 1000				
Со стороны обслуживания ДГ (компрессора)	1,0	1,2				
С противоположной стороны ДГ (компрессора)	0,8	0,9				
Со стороны обслуживания прочего оборудования (при необходимости постоянного прохода)	0,	6				
Между металлическими баками ГСМ, между баками и стеной	0,	6				
Между параллельными рядами труб или рядом труб и стеной	0,5					
То же при высоте укладки труб до 0,6 м	0,4					

17.4 Компрессорная установка

- 17.4.1 Компрессорная установка предназначена для создания и хранения сжатого воздуха, расходуемого на обеспечение подпора воздуха в помещениях ДЭС и другие нужды.
- 17.4.2 Машинное помещение и реципиентную компрессорной установки следует размещать в чистой зоне. Входы в помещения следует предусматривать через тамбуры. В помещениях следует предусматривать места для размещения поста механика и инструментов.

Не допускается расположение помещений установки рядом, над и под КПД, релейными, аппаратными, санитарно-бытовыми и взрыво-пожароопасными помещениями.

- 17.4.3 Двери из помещений должны открываться наружу. Высоту машинного помещения в чистоте следует предусматривать, исходя из обеспечения возможности демонтажа компрессора с помощью грузоподъемного устройства, но принимать не менее 2,3 м.
 - 17.4.4 Все приямки и каналы в помещениях следует закрывать заподлицо с полом.
- 17.4.5 Размеры проходов между оборудованием и ограждающими конструкциями следует принимать по таблице 17.1.

17.4.6 Производительность установки, нм³/мин, вычисляют с учетом заполнения всех емкостей по формуле

$$V = km\frac{G}{r} \tag{17.1}$$

где k — коэффициент, учитывающий потери на продувку, равный 1,3—1,5;

m— коэффициент, учитывающий утечки воздуха из баллонов и непроизводительные запасы, равный 1,1—1,45;

G — необходимый запас воздуха, кг;

r — плотность воздуха, кг/нм³;

t — требуемое время заполнения баллонов, мин.

Примечание — Размерность «нм³» принята при нормальных атмосферных условиях: температура — 0 °C, давление воздуха — 760 мм рт. ст.

17.4.7 Объем емкости, м³, для запаса воды в системе охлаждения компрессоров вычисляют по формуле

$$G = \frac{3,456P}{c_{\rm D}\Delta Tr_{\rm B}},\tag{17.2}$$

где Р — мощность, потребляемая компрессором, кВт;

 $c_{\rm p}$ — теплоемкость воды, кДж/(кг·К); ΔT — перепад температуры охлаждающей воды, К; $r_{\rm B}$ — плотность воды, кг/м 3 ; t — время работы компрессора, ч.

- 17.4.8 На трубопроводах воздуха высокого давления следует предусматривать приборы для подачи воздуха потребителям вручную (при отказе системы автоматического управления).
- 17.4.9 Помещения должны иметь приточно-вытяжную вентиляцию и приборы контроля «подпора» воздуха в сооружении. Производительность системы вентиляции следует предусматривать с учетом возможности забора воздуха компрессорами непосредственно из машинного зала. Запрещается размещать воздухозаборные устройства вблизи теплоизлучающих аппаратов.
- 17.4.10 Прокладку воздуховодов следует предусматривать не ближе 0,5 м от электропроводок и оборудования.
- 17.4.11 При применении компрессоров с давлением более 200 кгс/см² следует предусматривать осушку и очистку сжатого воздуха, а также устройства для определения влажности и наличия масла в сжатом воздухе.
- 17.4.12 Воду после охлаждения компрессорного оборудования рекомендуется направлять в систему охлаждения ДГ.
- 17.4.13 Выпуск воздуха для создания подпора и продувки тамбуров следует предусматривать через глушители, обеспечивающие уровень шума не более 100 дБ.
 - 17.4.14 Реципиентные следует предусматривать в соответствии с [6].

Стены и перекрытия реципиентных должны выдерживать возможные воздействия при разрыве баллонов. Вход в реципиентную следует предусматривать через тамбур с противопожарными дверями.

- 17.4.15 Оборудование компрессорной установки следует закреплять с учетом расчетного воздействия поражающих факторов.
- 17.4.16 Расстояние между баллонами и приборами отопления следует принимать не менее 1 м. при меньшем расстоянии между ними предусматривать экраны. Расстояние от экранов до баллонов и приборов должно быть не менее 100 мм.
 - 17.4.17 В помещениях установки следует предусматривать грузоподъемные средства.

17.5 Водоснабжение, водоотвод, канализация

- 17.5.1 Системы водоснабжения ДЭС должны обеспечивать подачу воды на охлаждение технологического оборудования, хозяйственно-питьевые цели и противопожарные нужды.
- 17.5.2 Системы водоснабжения и водоотвода следует предусматривать с учетом особенностей их работы в следующие расчетные периоды:
- при повседневной деятельности подача воды может осуществляться от источника любого типа, а удаление сточных вод — в незашишенную систему наружной канализации:

- в режиме автономности подачу воды следует осуществлять от защищенных водоисточников, а удаление сточных вод через защищенные канализационные выпуски.
- 17.5.3 Выбор схем водоснабжения следует проводить на основе составления общего баланса с учетом экономичного использования воды в любой период эксплуатации.
- 17.5.4 Защищенные водозаборные скважины следует располагать по возможности вблизи ДЭС или вдоль участка линии в пределах данного УАЖ.

При использовании одной рабочей скважины следует принимать одну резервную скважину; при большем числе рабочих скважин — две резервные скважины. Во всех случаях следует предусматривать один резервный насос.

- 17.5.5 Для систем водоснабжения, водоотвода и канализации (кроме водозаборных скважин) следует предусматривать по одному резервному насосу.
- 17.5.6 Насосные агрегаты следует предусматривать, как правило, под заливом; в ином случае обеспечивать возможность их быстрого и надежного пуска.
- 17.5.7 Емкость резервуаров водоотливных установок следует принимать с учетом максимальной производительности одного насоса при его работе не менее 5 мин. и числе включений не более шести в час.

Регулирующий объем резервуаров вычисляют с учетом нормативного числа включений насоса в час по формуле

$$W = \frac{Q}{4n}, \qquad (17.3)$$

где Q — номинальная производительность насосов (максимальная), м³/ч;

n — число включений насоса в час (не более шести).

17.5.8 Внутренний водопровод следует предусматривать из стальных труб. Для хозяйственно-питьевого водопровода следует использовать стальные оцинкованные трубы диаметром до 70 мм. В трубопроводах следует применять стальную арматуру или из ковкого чугуна.

Трубопроводы внутренних систем следует прокладывать в местах, доступных для осмотра и ремонта.

- 17.5.9 Норму расхода воды на пожаротушение следует принимать, исходя из следующих условий:
- а) число пожаров 1;
- б) число струй 2;
- в) расход воды на одну струю, л/с, 3,3;
- г) радиус компактной части струи, м, не менее 6.
- 17.5.10 В системах хозяйственно-питьевого водопровода следует применять установки для обеззараживания воды.

Для поддержания качества питьевой воды в резервуарах следует предусматривать ее регенерацию или консервацию ионами серебра.

Качество воды на нужды пожаротушения не регламентируется.

Качество воды в системах охлаждения оборудования следует принимать с учетом требований предприятий-изготовителей.

17.5.11 Систему канализации для отвода бытовых, дренажных, производственных загрязненных (технологических) вод следует предусматривать напорной, с установкой запорной арматуры.

Высоту гидрозатворов у санитарных приборов следует принимать не менее расчетной величины подпора воздуха в помещении.

17.5.12 Резервуары насосных установок следует располагать с учетом самотечного поступления в них сточных вод. Емкость резервуаров принимают аналогично 17.5.7.

В резервуарах следует предусматривать устройства для взмучивания осадка и герметический люк. Помещение насосных следует оборудовать поливочным водопроводом.

17.5.13 Все элементы систем следует закреплять или оборудовать амортизационными устройствами.

17.6 Электроснабжение

17.6.1 Мощность ДЭС определяют, исходя из обеспечения электроэнергией установок и устройств УАЖ, работающих в режиме убежища, с учетом перспективы развития линии в ближайшие 10 лет и резерва не менее 20 % для электроснабжения соседних участков в аварийной ситуации.

17.6.2 Дизель-электрические агрегаты принимают с генераторами напряжением 10,5 кВ или 400/230 В в зависимости от мощности ДЭС. При мощности ДЭС до 3000 кВт рекомендуются ДГ с генераторами напряжением 400/230 В.

При использовании ДГ с генераторами 400/230 В для передачи электроэнергии в сеть 10 кВ участка линии следует предусматривать сухие повысительные трансформаторы.

17.6.3 ДГ должны допускать длительную параллельную работу между собой и кратковременную — с энергосистемой города (на период перевода нагрузки).

Допустимое число параллельно работающих ДГ и способ их синхронизации следует принимать на основании технических условий предприятия-изготовителя.

- 17.6.4 При включении ДГ на параллельную работу следует обеспечивать устойчивую работу других электроустановок.
- 17.6.5 Электроснабжение ДЭС в мирное время предусматривает от двух независимых источников, в качестве которых принимают ТПП или ПП данного УАЖ.
- 17.6.6 Шины РУ 10 кВ и 400/230 В разделяют на две секции и предусматривают между ними секционные выключатели.

Коммутационные аппараты питающих линий генераторов и трансформаторов, а также секционные аппараты должны иметь местное, автоматическое и дистанционное управление.

Шкафы и панели РУ допускается принимать с односторонним обслуживанием.

- 17.6.7 Электрические сети переменного тока напряжением до 1 кВ следует предусматривать согласно [5] с глухозаземленной нейтралью трансформаторов, как правило, по системе TN-C, в отдельных случаях (например, для передвижных и переносных электроприемников) по системе TN-C-S.
- 17.6.8 Распределительные устройства и трансформаторы следует размещать в отдельных помещениях. Помещения должны иметь водоотводящие зонты.

Коридоры обслуживания РУ не допускается использовать в качестве основного или запасного прохода в другие помещения, а также для проноса оборудования.

17.6.9 Для систем управления и электрической защиты применяют постоянный ток напряжением 220 В.

Устройства электрической защиты и системной автоматики электроустановок должны соответствовать [5].

- 17.6.10 На отходящих линиях 10 кВ следует предусматривать максимальную токовую защиту от короткого замыкания с действием на отключение и максимальную токовую защиту от однофазных замыканий на землю с действием на сигнал или отключение.
 - 17.6.11 Устройства АВР следует предусматривать для:
 - секционных выключателей и выключателей вводов при питании секции от различных источников;
 - резервных питающих линий от внешних источников питания.
- 17.6.12 Для особой группы электроприемников 1-й категории следует предусматривать источник бесперебойного питания согласно СП 120.13330 (применительно к установкам ДЭС) с отнесением к этой группе потребителей, обеспечивающих герметизацию ДЭС и подготовительные операции для пуска ДГ.
- 17.6.13 Включение ИБП должно осуществляться автоматически как при отключении других источников, так и при значительном изменении их параметров электроэнергии. Обратное переключение питания также должно происходить автоматически.
 - 17.6.14 В помещениях следует предусматривать рабочее и аварийное освещение.

Рабочее освещение следует предусматривать во всех помещениях, аварийное освещение — в помещениях, где в аварийных условиях необходимо продолжение работ или эвакуация людей. Аварийное освещение следует использовать при отключении рабочего освещения на период до восстановления рабочего освещения или в течение времени, необходимого для эвакуации персонала.

В машинном помещении, топливохранилище и насосной ДЭС, а также в других производственных помещениях следует предусматривать местное освещение переносными светильниками напряжением 12 В.

В производственных помещениях на каждом рабочем месте следует устанавливать штепсельную розетку.

17.6.15 Конструкции светильников должны быть сейсмостойкими и выдерживать расчетные перегрузки, в ином случае их установку следует предусматривать с амортизацией.

Светильники аварийного освещения должны отличаться от светильников рабочего освещения типом, размерами или специально нанесенными на них знаками.

В качестве аварийных источников освещения рекомендуется применять светильники светодиодного типа.

17.6.16 Освещенность основных эвакуационных проходов (на полу и ступенях лестниц) при аварийном освещении должна составлять 3 лк.

При расчете освещенности с использованием ламп накаливания коэффициент запаса следует принимать равным 1,3.

В коридорах и переходах следует предусматривать указатели:

- а) направления движения к выходам на поверхность с лампами зеленого цвета;
- б) мест установки телефонов и ручных пожарных извещателей с лампами синего цвета;
- в) мест установки пожарного оборудования красного цвета.

Питание ламп следует предусматривать от ИБП.

17.6.17 В основных помещениях общее рабочее освещение рекомендуется компоновать по группам с обеспечением их питания от разных секций РУ. При отключении любой группы освещенность помещения не должна снижаться более чем на 50 %.

17.6.18 Для силовых и осветительных сетей следует применять провода и кабели, не распространяющие горение. Марки проводов и кабелей следует принимать согласно СП 120.13330.

Прокладку кабелей следует предусматривать открыто по стенам, потолкам, кабельным конструкциям, в каналах, полу, за подвесными потолками.

Кабели резервного питания групп потребителей следует прокладывать по различным трассам.

Кабели управления, связи и сигнализации следует прокладывать раздельно от силовых и осветительных кабелей.

Не допускается прокладка транзитных кабелей через помещение ИБП, машинное помещение ДГ и топливохранилище, а также через противопожарные тамбуры и лестничные клетки.

17.6.19 Заземляющие устройства следует предусматривать согласно [5] и СП 120.13330.

18 Фильтровентиляционная установка

18.1 Производительность ФВУ следует определять расчетом, исходя из условия, что температура воздуха в конце вентилируемого участка не должна превышать предельно допустимых величин.

Число вентиляционных агрегатов должно быть не менее двух. При обосновании общая производительность агрегатов может превышать расчетную.

Дистанционный контроль параметров наружного воздуха следует предусматривать согласно 10.12 с выводом измеряемых показателей в КПФ.

18.2 Системы местной вентиляции помещений должны обеспечивать поддержание параметров воздуха в мирное время, при чрезвычайных ситуациях и в военное время с учетом режима дымоудаления. Температуру воздуха и кратность воздухообмена в помещениях следует принимать по таблице 18.1.

Таблица 18.1

Помещение	Расчетная те воздуха, °С, в		Кратность воз	духообмена в час			
	холодный	теплый	приток	вытяжка			
Машинный зал, помещение ступени III очистки подпорной установки	5	35	3*				
Пульт управления	18	28	6*				
Комната отдыха	18	28	5				
Помещение для укрываемых	18	27		5			
Мастерская	18	30		3			
Бойлерная	5	35	6	10			
Подстанция, щитовые	5	35	4*				
Венткамеры	5	35	3				

Окончание таблицы 18.1

Помещение	Расчетная те воздуха, °С, в		Кратность воз	духообмена в час		
·	холодный	теплый	приток	вытяжка		
Насосные	5	35		6		
Тамбуры, тамбур-шлюзы	5	28	25			
Санпропускник	18	28	5			
Хранилище грязного, чистого масла	5	35		10		
Коридоры, каналы, ходки, помещение сту- пеней I и II очистки подпорной установки	5	30		3		
Туалет	16	28	_	50 м ³ /ч на один прибор		

^{*} Следует проверять расчетом по тепловыделениям, принимать по максимальному значению, при необходимости использовать охлаждение воздуха.

Резервное оборудование для систем местной вентиляции не предусматривать.

- 18.3 В мирное время для поддержания необходимой температуры и влажности воздуха следует применять электрическое отопление. Допускается использование водяного отопления.
 - 18.4 Санпропускник следует предусматривать согласно разделу 16.
- 18.5 Система водоснабжения должна обеспечивать подачу воды на хозяйственно-питьевые, противопожарные и технологические нужды (охлаждение подшипников вентиляторов, воздухоохладители, обработка тамбур-шлюзов, промывка туалета).
- 18.6 Система водоотвода должна состоять из самотечных лотков и труб, приемных колодцев, трапов и водоотливной установки с водосборниками и напорными трубопроводами. Напорные трубопроводы следует присоединять к городской сети водостока.

Для чистых и грязных зон применяют раздельные системы водоотвода. Стоки из чистых зон допускается отводить в дренажную систему метрополитена.

В системе водоотвода следует предусматривать гидрозатворы высотой не менее расчетной величины подпора воздуха в помещении.

- 18.7 Сточные воды от душевых и санитарных приборов следует отводить в резервуар канализационной установки, откуда удалять в городскую сеть канализации.
 - 18.8 Электроснабжение ФВУ следует принимать согласно 12.2.

Силовые и осветительные сети следует предусматривать аналогично 17.6.

19 Командный пункт метрополитена. Основные положения

- 19.1 В КПМ следует предусматривать ДЭС, ФВУ, санпропускник, необходимое оборудование и обеспечение, рассчитанные на его автономное функционирование в течение заданного периода времени.
 - 19.2 КПМ должен состоять из технологического и технического блоков.

В технологическом блоке следует размещать персонал и оборудование для оперативного управления работой метрополитена в режимах ГО и ЧС, в техническом — персонал и оборудование, обеспечивающие функционирование объекта.

Административные, медицинские и бытовые помещения следует предусматривать согласно таблице 19.1.

Таблица 19.1

Наименование (назначение) помещения	Площадь, м ²
Начальник метрополитена	15
Начальник штаба ГОЧС	15
Начальник КПМ	15

СП 263.1325800.2016

Окончание таблицы 19.1

Наименование (назначение) помещения	Площадь, м ²
Начальники служб	По 10
Службы материально-технического снабжения и финансового обеспечения	2×10
Строительная и проектная организации	2×10
Архив, спецчасть	2×10
Зал совещаний	20
Медпункт	4×12
Буфет	20
Спальни	2×20
Примечание— Состав и площади помещений могут уточняться в задании на	проектирование.

Норму площади для каждого работающего в КПМ следует принимать равной 2 м².

Состав и площади помещений производственного назначения следует определять при проектировании.

19.3 Воздухоснабжение КПМ следует предусматривать для режимов ЧВ, ФВ и ПИ.

Система вентиляции должна обеспечивать:

- поддержание нормируемых параметров воздуха;
- очистку приточного воздуха от радиоактивных, химических и бактериальных средств поражения;
- дистанционный контроль температуры, содержания окиси углерода, углекислого газа и отравляющих веществ в приточном (наружном) воздухе;
 - создание и поддержание в сооружении нормируемого подпора воздуха;
 - регенерацию химического состава воздуха в режиме полной изоляции.
- В режиме ЧВ подачу наружного воздуха следует обеспечивать из расчета 20 $M^3/(4 \cdot 4 \cdot 4 \cdot 1)$, в режиме ΦB из расчета 5 $M^3/(4 \cdot 4 \cdot 1)$.

В режиме ПИ в течение заданного периода времени следует предусматривать регенерацию воздуха из расчета допускаемого содержания углекислого газа — 1 %, кислорода — 19 %.

Для подпора воздуха следует использовать баллоны со сжатым воздухом или специальную фильтровентиляционную систему.

Дымоудаление после пожара следует предусматривать только в период режимов ЧВ и ФВ.

19.4 Расчетную температуру и относительную влажность воздуха в помещениях следует принимать по таблице 19.2.

Таблица 19.2

	С	птимальное значен	ние		е значение ре ературы, °С,	Темпера- тура	
Наименование помещения	Результирую- щая темпера- тура, °C	Температура по сухому термо- метру, °С	Относительная влажность, %	ЧВ	ФВ	ПИ	воздуха для проектиро- вания отопления, °C
Служебное	16—20	20—23	40—60	16—21,5	16—22,5	16—23,5	19
Диспетчерская	16—20	20—23	40—60	16—23	16—24	16—26,5	19
Зал АТС	17—20	19—21	40—60	15—23	15—24,5	15—26,5	18
Релейная, кроссовая	17—20	19—21	40—60	15—25	15—26	15—27,5	18
Аппаратная	17—20	19—21	40—60	15—22	15—23,5	15—26,5	18
Размещение персонала	16—20	20—23	40—60	15—23	15—14,5	15—26,6	18

Окончание таблицы 19.2

	c	птимальное значен	ние		е значение ре ературы, °С,		Темпера- тура
Наименование помещения	Результирую- щая темпера- тура, °C	Температура по сухому термо- метру, °C	Относительная влажность, %	ЧВ	ФВ	ПИ	воздуха для проектиро- вания отопления, °C
Комната от- дыха	17—21	21—24	40—60	16—24	16—25	16—26,5	19
Комната при- ема пищи	16—20	29—23	40—60	17—23,5	17—24,5	17—26,5	18
Медицинский пункт	17—21	21 —24	40—60	16—22	16—23,5	16—25,5	18
РУ и щитовые подстанции	16—22	18—24	40 —60	15—24	15—26,5	15—28,5	18

Тепловыделения, влаговыделения от людей, а также выделения людьми углекислого газа при различных видах работ следует принимать по таблице 19.3.

Таблица 19.3

Характер выполняемой работы	Потребление кислорода, л/ч	Выделение угле- кислого газа, л/ч	Общие тепловы- деления, ккал/ч
Состояние относительного покоя	20	17	100
Легкая физическая или напряженная умственная работа	25	20	125
Физическая работа средней тяжести	40	35	200

Примечания

Нормы общих тепловыделений от людей, находящихся в состоянии покоя, при температуре внутреннего воздуха свыше 25 °C следует уменьшать на 20 %.

19.5 Для отделки помещений следует использовать влагостойкие, негорючие, нетоксичные материалы. Применение штукатурки не допускается. Поверхность конструкций из монолитного железобетона должна быть высококачественной.

Полы в помещениях, как правило, должны быть бетонные наливные. В помещениях с постоянным пребыванием персонала в качестве покрытия бетонных полов допускается применение линолеума с пожарной опасностью не более высокой, чем группы Г2, РП2, Д3, Т2 по [5] (см. также [10]), по керамзитобетонному слою.

19.6 Проектирование КПМ следует предусматривать на основании отдельного задания или технических условий, в которых отражены требования по всем разделам проектирования.

В задании или технических условиях следует учитывать положения настоящего свода правил и СП 120.13330, а также отражать требования, соответствующие особенностям метрополитена и проектируемого объекта.

¹ Количество влаги, выделяемой человеком (г/ч), равно произведению скрытых тепловыделений (ккал/ч) на коэффициент 1,75.

² Приведенные значения общих тепловыделений соответствуют пределам относительной влажности 30—70 % и значениям температуры 20—35 °C при легкой работе и работе средней тяжести; 20—25 °C — при состоянии покоя.

Приложение А (справочное)

Примерная схема воздухоснабжения УАЖ

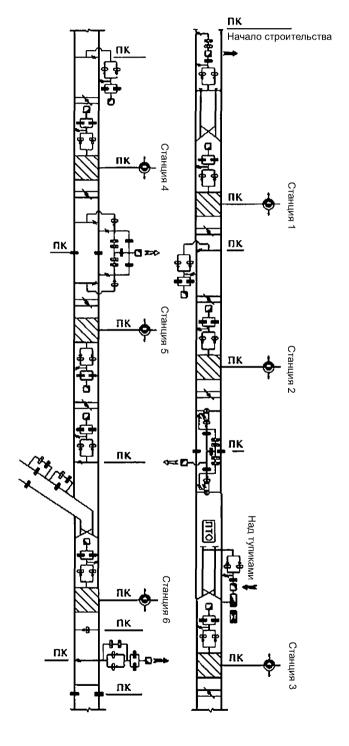


Рисунок А.1, лист 1

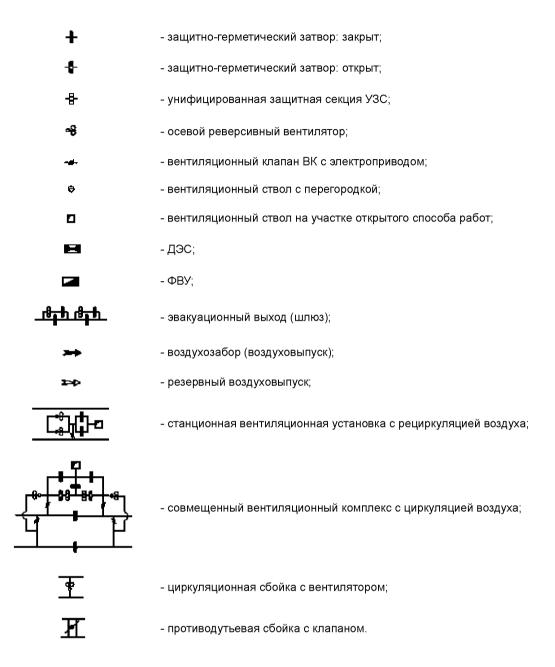


Рисунок А.1, лист 2

Приложение Б (справочное)

Дополнительные виды оперативно-технологических связей

			Вид	ы до	полн	ител	ьных	опе	рати	ІВНО-	техн	олог	ичес	жих	СВЯЗ	ей	
Наи	менование абонента	Прямая начальника КПМ	Прямая ОРГ КПМ	Прямая КПЛ	Прямая КПУ	Прямая КПОПБ КПМ	Избирательная КПОПБУ	Оперативная ОПБ	Оповещение сиренами	ПО	Эфирная радио	Внешний телефонный ввод	Станционная радио	Междиспетчерская	Звуковая запись	АТС внутренняя	Электрочасы
	дпд			+	+									+	+	+	+
	дпэ			+	+									+	+	+	+
	дпэс			+	+									+	+	+	+
	дпэм			+	+									+	+	+	+
LCTA 4	Начальник	*	+								+	+		+	+	+	+
КПМ	Начальник штаба ГО	*	+						*			+			+	+	+
	ОРГ	+	*								+	+		+	+	+	+
	кпопь	+	+			*						+			+	+	+
	ЦУС									*						+	+
	ATC								+							*	+
кпл		+	+	*							+					+	
КПУ		+	+	+	*						+					+	
кпопьу					+	*+	*									+	
КПФ			+		+					*						+	
кпд			+		+					*						+	
кпвв			+		+					+						+	
кпш			+		+					*						+	
ЗКП ГО и ЧС гор	ода	+	+								+				+		
ЗКП ГО и ЧС заг	ородной зоны		+								+				+		
КПУ соседних уч	астков				+						+					+	
Наземные служб	бы города												*				
дпс (кпс)			+	+	+				+	+						+	
КПОПБС (дежур	ный по станции)					+	+	*								+	
Пост милиции																+	
Машинист эскал	аторов															+	

Продолжение таблицы

		Вид	ы до	полн	ител	ьных	опе	рати	вно-	техн	олог	ичес	ских	связ	ей	
Наименование абонента	Прямая начальника КПМ	Прямая ОРГ КПМ	Прямая КПЛ	Прямая КПУ	Прямая КПОПБ КПМ	Избирательная КПОПБУ	Оперативная ОПБ	Оповещение сиренами	ПО	Эфирная радио	Внешний телефонный ввод	Станционная радио	Междиспетчерская	Звуковая запись	АТС внутренняя	Электрочасы
Медпункт															+	
тпп, пп															+	
Платформа в голове поезда							+					+				
Платформа в хвосте поезда							+					+				
Посты затворов на станции, в тоннеле, в УТВ							+									
Платформа — средний зал								+								
Входы в вестибюль (в защищенной зоне), в притоннельные сооружения							+									
Перегонные тоннели и тупики — не более чем через 200 м							+									
Тупик. Начало служебной платформы							+									
КПС пересадочной станции															+	
Примечание— «*» — пульт (коммута	тор);	«+»	— a6	боне	нтск	oe (d	окон	ечн	oe) y	/стр	ойс	гво.				

Приложение В (справочное)

Методика испытаний герметичности отсека линии метрополитена

В.1 Оценка герметичности отсека

- В.1.1 Испытания герметичности отсеков проводят в приспособленных под убежища участках линии при их приемке в эксплуатацию, а также периодически в процессе эксплуатации метрополитена.
- В.1.2 Задачей испытаний является определение зависимости объема утечек воздуха от величины подпора в отсеке при наддуве вентиляционными установками, а также выявление мест утечек воздуха из отсека для последующего устранения обнаруженных неплотностей.
- В.1.3 Критерием при оценке герметичности отсека является кривая, отражающая зависимость между нормируемыми (допустимыми) потерями воздуха через неплотности и подпором (избыточным давлением воздуха по сравнению с атмосферным) в отсеке. Герметичность отсека определяют путем сравнения полученных в ходе испытаний данных о фактических потерях воздуха с нормируемыми.

Нормируемые утечки воздуха в испытываемых отсеках (на один километр отсека) следует рассчитывать по формулам (B.1) и (B.2) и представлять в виде графиков в осях $L - \Delta P$ (рисунок B.1):

для глубокого заложения:

$$L_{\rm H} = 12,5\Delta P + 2,16\delta\sqrt{\Delta P} \; ; \tag{B.1}$$

- для мелкого заложения:

$$L_{\rm L} = 50.0\Delta P + 2.16\delta \sqrt{\Delta P} \,, \tag{B.2}$$

где $L_{\rm H}$ — нормируемая утечка воздуха, м 3 /(ч·км); ΔP — подпор воздуха в отсеке, кгс/м 2 ;

δ — периметр защитных устройств (затворов, клапанов и т. п.) на один километр двухпутного отсека, м/км.

Примечание — Коэффициенты в формулах приняты с учетом данных натурных измерений в московском метрополитене.

В формулах (В.1) и (В.2) первый член характеризует утечки воздуха через строительные ограждающие конструкции, а второй — через защитные устройства.

Величина δ находится из отношения суммарного периметра всех защитных устройств, отделяющих отсек от внешней среды и смежных с ним помещений, к общей его протяженности. Периметр определяется по притвору (длине уплотняющей резины) устройства. При последовательной установке в проеме двух и более защитных устройств учитывается периметр только первого из них со стороны отсека.

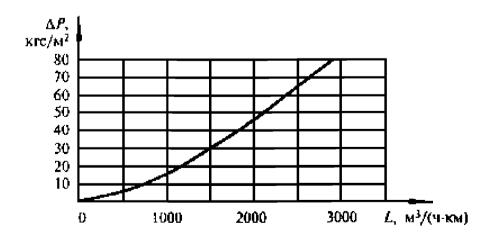


Рисунок В.1 — График нормируемой утечки воздуха в испытываемом отсеке

В.1.4 Для оценки герметичности отсека необходимо выполнить не менее двух замеров подпора (усредненного по длине отсека) при различных расходах подаваемого в отсек воздуха.

Фактический расход подаваемого в отсек воздуха L_{Φ} , численно равный его потерям через неплотности в строительных ограждающих конструкциях и защитных устройствах [8], приведенный по температуре и давлению к стандартным условиям, в расчете на километр двухпутного отсека $m^3/(4 \text{ км})$ вычисляют по формуле

$$L_{\Phi} = \frac{L_3 Z}{I}, \tag{B.3}$$

где L_3 — замеренный расход подаваемого в отсек воздуха, м³/ч;

L — протяженность отсека, км,

Z — поправка на стандартный воздух с температурой 20 °C и барометрическим давлением 760 мм рт. ст., вычисляемая по формуле

$$Z = \frac{0.358B_3}{273 + t_2}; (B.4)$$

$$L_{\Phi} = L_3 \frac{0.385 \hat{A}_3}{L(273 + t_a)}, \tag{B.5}$$

где B_3 — барометрическое давление в отсеке (в месте замера L_3), мм рт. ст.; t_3 — температура воздуха (в месте замера L_3), °C.

Средний подпор воздуха в отсеке, приведенный к условиям стандартного воздуха:

$$\Delta P_{\Phi} = \frac{\frac{\Delta P_{31}}{Z_1} + \frac{\Delta P_{32}}{Z_2} + \dots + \frac{\Delta P_{3n}}{Z_n}}{n},$$
(B.6)

где $\Delta P_{31},~\Delta P_{32}...\Delta P_{3n}$ — подпор воздуха в отсеке в точках (местах) замера; $Z_1,~Z_2...Z_n$ — поправка на стандартный воздух в точке замера подпора воздуха;

n — число точек (мест) замера.

В.1.5 Герметичность отсека считается удовлетворительной, если на графике в осях $L - \Delta P$ точки L_{Φ} , ΔP_{Φ} , полученные в ходе испытаний и определяющие фактическое состояние расхода (утечки) и подпора воздуха в отсеке, располагаются на кривой или слева от нее. В противном случае герметичность отсека признается неудовлетворительной (см. ниже пример оценки герметичности отсека).

В.2 Подготовка испытаний

- В.2.1 Испытания отсеков на герметичность проводит комиссия в процессе приемки линии в эксплуатацию. На комиссию возлагаются также работы по подготовке испытаний и оформлению их результатов.
 - В.2.2 Составляют рабочую программу испытаний в соответствии с разделом В.5.
- В.2.3 До начала испытаний строительные конструкции, места ввода коммуникаций, защитные устройства, отделяющие отсек (участок) от внешней среды и примыкающих помещений, приводят в соответствие с нормативными требованиями и проектной документацией.
 - В.2.4 В процессе подготовки к испытаниям проводят следующие мероприятия:
 - определяют последовательность включения вентиляционных установок в отсеке;
- тарируют устройства для замера расхода воздуха и выполняют его измерение в режиме работы тоннельной вентиляции;
- измеряют напор вентиляционных установок, используемых для наддува воздуха в отсек, а также определяют способы изменения воздухоподачи;
- подготавливают отверстия для установки штуцеров в местах замера подпора и депрессии естественной тяги в отсеке;
 - проводят опробование приборов и оборудования;
- намечают места размещения измерительных постов в отсеке и командного пункта испытаний (КПИ), обеспечивается связь между ними.
- В.2.5 Непосредственно перед испытаниями проводят инструктаж состава участников испытаний; проверяют телефонную связь постов с КПИ и проводят тренировочный цикл взаимодействия персонала КПИ и постов.

При проведении инструктажа по технике безопасности особо указывается на недопустимость нахождения людей во время испытаний в непосредственной близости от защитных устройств с внешней стороны отсека.

В.2.6 Для проведения испытаний рекомендуется использовать приборы и материалы, указанные в таблице В.1. Допускается применять приборы и материалы других типов с аналогичными техническими параметрами.

СП 263.1325800.2016

Таблица В.1

Наименование	Тип	Количество
Микроманометр многопредельный с наклонной трубкой, шт.	MMH-240	5
Пневмометрическая трубка, шт.	_	4
	ACO-3	10
Анемометр ручной чашечный со счетным механизмом, шт.	MC-13	5
Термоанемометр, шт.	TA-8M	2
Психрометр аспирационный, шт.	MB-4M	5
Барометр-анероид контрольный, шт.	M-67	2
Барограф метеорологический суточный, шт.	M-22c	3
Термограф метеорологический суточный, шт.	M-16C	5
Гигрограф метеорологический суточный, шт.	M-21C	5
Штатив фотографический, шт.	ФШУ 6	5
Струбцина с поворотной головкой, шт.	ФС-ОО-СБ	5
Секундомер, шт.	СОС пр-26-2	5
	«Агат»	5
Часы наручные, шт.	_	По числу постов
Переносная перемычка с измерительным коллектором, компл.	_	2
Штуцер для измерения перепада давления, шт.	<i>d</i> = 6 мм	5
Рулетка, шт.	5 м	2
Карманный фонарик, шт.	_	10
Резиновые шланги к микроманометру, м	d = 5 мм	60
Спирт этиловый технический (гидролизный) для микроманометров, л	Марка А, плот- ность 0,8095 г/м ³	1,5
Свечи стеариновые, шт.	_	По числу защитных устройств с 10-про- центным запасом
Материалы и инструменты для герметизации неплотностей	_	По необходимости
Электропровод-удлинитель, шт.	20 м	4
Чемодан для переноски приборов, шт.	50×30×20	4
Журнал наблюдений, шт.		По числу постов
Бланк наблюдений, шт.	_	По числу постов
Принципиальная схема отсека (участка), шт.	_	3
Карточка защитных устройств, шт.	_	По числу защитных устройств в 3 экз.

В.3 Проведение испытаний

Закрываются и герметизируются станционные, перегонные и вентиляционные затворы и другие защитные устройства (клапаны, задвижки и т. п.), за исключением устройств в УТВ, через которую будет нагнетаться воздух.

В.З.1 Участники испытаний с необходимой документацией и приборами прибывают на свои посты, устанавливают приборы и оборудование и докладывают о готовности на КПИ.

В.3.2 Отключаются все УТВ в испытуемом отсеке и в отсеках, прилегающих к нему.

Результаты выполненной работы передаются на КПИ и заносятся в бланк.

В.З.З Измеряются депрессия естественной тяги, барометрическое давление, температура и относительная влажность воздуха в отсеке. Результаты замеров фиксируются в бланке.

В.3.4 Включается УТВ для наддува воздуха в отсек.

Проводится непрерывное наблюдение за изменением подпора воздуха в отсеке, измеряется расход нагнетаемого в отсек воздуха, результаты замеров через каждые 30 с фиксируются в бланке.

Одновременно с началом нагнетания воздуха в отсек проводится обследование возможных мест утечек воздуха.

- В.3.4.1 Измерение подпора, естественной тяги, температуры, относительной влажности воздуха и барометрического давления в отсеке
- В.3.4.1.1 Величина подпора воздуха в отсеке определяется методом измерения перепада давления преимущественно на станционном затворе с использованием резервной трубы в упоре затвора.
- В.3.4.1.2 Микроманометр, используемый при замерах, должен находиться в хорошо освещенном месте, на прочном основании и удобной высоте. Измерительную трубку микроманометра ММН-240 следует устанавливать с «постоянной прибора» K = 0.4, обеспечивающей измерение величины подпора воздуха в отсеке до 100 кгс/м².
- В.3.4.1.3 При измерении разрежения в отсеке (в случае действия отрицательной естественной тяги) к штуцеру в затворе следует присоединять плюсовую трубку микроманометра.
- В.3.4.1.4 Величину естественной тяги следует измерять в период, когда все защитные устройства отсека, кроме затвора в УТВ, которая будет подавать воздух в отсек, закрыты.

Результаты измерений следует записывать в журнал наблюдений с интервалом 30 с по секундомеру, с отметкой текущего времени в часах и минутах.

- В.3.4.1.5 Температуру и относительную влажность воздуха на станции следует измерять любым психрометром в начале и конце испытания.
- В.3.4.1.6 Барометрическое давление следует измерять суточными метеорологическими барографами М-22с, один из которых устанавливается до затвора, другой — после затвора, на одном уровне. Данные записи барографов используют при обработке результатов измерения подпора и для анализа хода испытаний в целом.

В случае если в отсек входят несколько станций, величину подпора измеряют на каждой станции, замеры приводят к стандартному воздуху и усредняют по отсеку.

В.3.4.2 Измерение расхода воздуха

В.3.4.2.1 Расход нагнетаемого воздуха, соответствующий суммарным утечкам воздуха через неплотности в отсеке при установившемся режиме, вычисляют по формулам:

$$L_{\rm s} = V_{\rm cp} F, \, \mathsf{m}^3 / \mathsf{c} \tag{B.7}$$

или

$$L_3 = 3600 V_{cp} F_1 M^3 / 4$$
 (B.8)

где L_3 — количество воздуха, подаваемого в герметизированный отсек;

 $V_{\rm cp}$ — средняя скорость движения воздуха в замерном сечении тоннеля или трубопровода, м/с; F — площадь замерного сечения тоннеля или трубопровода, м².

Примечание — Достоверность результатов замеров зависит от правильного выбора места, времени и метода измерения, устойчивости параметров воздушного потока (скорость, давление, температура, относительная влажность), точности измерения сечения тоннеля.

В.3.4.2.2 К замерам следует приступать не ранее чем через 15—20 мин. после включения УТВ на нагнетание, то есть после стабилизации давления в загерметизированном отсеке.

Следует учитывать, что при большом внутреннем объеме и относительно высокой герметичности отсека расход воздуха из него (утечка) может быть меньше, чем производительность вентилятора. Чтобы в этих условиях обеспечить устойчивость работы вентилятора (предотвратить помпаж), необходимо изменить способ воздухоподачи (3.5).

В.3.4.2.3 Замерное сечение следует выбирать, как правило, на прямолинейном участке тоннеля на расстоянии не менее пяти внутренних диаметров тоннеля от вентилятора и местных сопротивлений (сопряжений, сужений, поворотов, оборудования и т. п.).

Площадь замерного сечения следует вычислять по данным обмера тоннеля.

В.3.4.2.4 Для приведения данных испытаний к нормальным условиям одновременно с замером скорости воздушного потока в замерном сечении следует фиксировать барометрическое давление барометром-анероидом М-67, температуру и относительную влажность воздуха — аспирационным психрометром МВ-4М.

Результаты измерений заносят в журнал наблюдения с указанием текущего времени с точностью до 30 с.

В.3.4.2.5 Одним из решающих факторов при выборе способа измерения скорости воздушного потока является ее предполагаемая величина в замерном сечении.

СП 263.1325800.2016

При скорости воздуха более 0,5 м/с в тоннелях диаметром 3 м и более замерщик должен становиться спиной к стене тоннеля и, передвигаясь поперек тоннеля, равномерно перемещать анемометр, держа его перед собой на вытянутой руке. Средняя скорость потока в сечении определяется по числу оборотов крыльчатки анемометра в секунду (разность начального и конечного отсчетов, отнесенная к продолжительности замера в секундах) и прилагаемому к анемометру тарировочному графику.

Замеры в каждом сечении повторяются не менее трех раз.

Полученный при замерах осредненный результат умножается на поправочный коэффициент, учитывающий положение замерщика в сечении тоннеля, равный

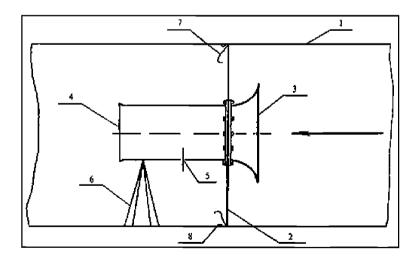
$$D = \frac{F - 0.4}{F} \,. \tag{B.9}$$

В.3.4.2.6 При скорости воздушного потока от 0,2 до 0,5 м/с в тоннелях диаметром 3 м и более следует использовать анемометры АСО-3 или термоэлектроанемометры. Указанные приборы с помощью фотоштативов или других аналогичных приспособлений размещают в центре равновеликих колец, на которые разбивается замерное сечение. Число таких колец должно быть не менее пяти. Включение и выключение всех приборов проводится одновременно. Среднюю скорость воздушного потока определяют по показаниям всех приборов.

В случаях когда поле скоростей воздуха в замерном сечении известно, для определения средней скорости потока в тоннеле достаточно измерить скорость воздуха в центре сечения и умножить ее на коэффициент поля скоростей, для прямолинейных участков вентиляционных и перегонных тоннелей равный 0,83—0,85.

В.3.4.2.7 При скорости воздушного потока в тоннеле 0,2 м/с и менее для получения достоверных результатов измерений в замерном сечении тоннеля применяется съемная перемычка из воздухонепроницаемого материала (брезент, полиэтиленовая пленка и т. п.). В центре перемычки устраивается окно, площадь которого определяется из условия обеспечения в его сечении скорости воздуха не менее 0,5 м/с. Перемычку следует изготавливать заранее, исходя из предполагаемого места ее установки. Целесообразно перемычку накладывать на решетку ограждения вентиляционного тоннеля со стороны пути, закрепляя ее с помощью тесемок.

Для замера скорости в окне перемычки параметры анемометра следует выбирать, исходя из предполагаемой скорости потока.


Более точные результаты могут быть получены при использовании коллектора, установленного в перемычке согласно рисунку В.2. В этом случае вместо анемометра можно использовать микроманометр с пневмометрической трубкой.

Скорость воздуха, м/с, определяется по измеренной в коллекторе величине динамического (скоростного) давления по формуле

$$V = \sqrt{(2P_{\mathbf{g}}\mathbf{g})/\rho}, \tag{B.10}$$

где $P_{\rm g}$ — динамическое давление, кгс/м 2 ; ρ — плотность воздуха, кг/м 3 ;

g — ускорение свободного падения, $g = 9.81 \text{ м/c}^2$.

1 — вентиляционный тоннель; 2 — перемычка; 3 — входной раструб; 4 — цилиндрическая часть; 5 — отверстие для установки измерительного прибора; 6 — штатив; 7 — крепежные устройства (тесемки, ремень); 8 — решетка

Рисунок В.2 — Схема установки перемычки с измерительным коллектором в вентиляционном тоннеле

Для стандартных условий ($t = +20 \, ^{\circ}\text{C}$; $\phi = 50 \, \%$) при $\rho \ge 1,2 \, \text{кг/м}^3$ формула принимает вид

$$V = 4,04\sqrt{P_g}$$
 (B.11)

Данная формула с достаточной для практики точностью справедлива при значениях температуры воздуха в пределах 15—25 °C.

В.3.4.3 Определение мест утечек воздуха в отсеке

В.3.4.3.1 При испытании отсека на герметичность в нем создается достаточно высокое давление (подпор), приближающееся к величине напора вентиляторов (~60—80 кгс/м²), вследствие чего происходит утечка воздуха через неплотности в ограждающих конструкциях и в защитных устройствах.

В.3.4.3.2 Для снижения утечек воздуха из отсека и соответственно повышения его герметичности в процессе испытаний необходимо обнаружить места утечек и устранить их.

Наиболее вероятными местами утечек воздуха из отсека являются:

- притворы защитных устройств;
- заделка обрамления защитных устройств в упоры;
- вводы коммуникаций в отсек (кабельные, водопроводные и др.);
- дренажи, оборудованные задвижками.

Не исключается утечка воздуха и через неплотности в ограждающих строительных конструкциях тоннелей.

В.3.4.3.3 Обнаружение неплотностей в отсеке возможно различными способами. Например, при давлении в отсеке более 30 кгс/м² утечки могут быть обнаружены на слух. Особенно эффективен этот способ при обнаружении утечек в защитных устройствах. В этих же местах утечки могут быть обнаружены осязанием. Хорошим индикатором утечек является пламя свечи, которое при значительных утечках вблизи обнаруженных неплотностей отклоняется под действием воздушного потока.

Для индикации утечек могут быть использованы различные дымообразующие устройства — от специальных «дымообразующих трубок», используемых в горном деле, до простейших дымарей.

В.3.4.3.4 Места утечек воздуха отмечаются мелом, фиксируются в схеме отсека и в карточках защитных устройств.

В.3.5 Работы по 3.4 повторяют при измененной воздухоподаче путем:

- включения второго вентилятора УТВ;
- включения второй (третьей) УТВ;
- частичного перекрытия (например, защитным устройством, шибером и т. п.) сечения вентиляционного канала;
- изменения частоты вращения колеса вентилятора.

В.3.6 При завершении испытаний по команде с КПИ отключаются УТВ наддува и восстанавливается исходное положение всех защитных устройств.

Из отсека удаляются использованные в испытаниях оборудование и материалы.

В.4 Оформление результатов испытаний

На основании результатов замеров и расчетов, выполненных по данной методике, составляется протокол испытаний отсека на герметичность. К протоколу прикладывают схему испытуемого отсека, журналы наблюдений, карточки защитных устройств и при необходимости пояснительную записку.

В.5 Примерные формы основных отчетных (рабочих) документов

Использованные в приведенных ниже формах документов наименования устройств, приборов, оборудования, места их установки в отсеке, а также схема отсека с условными обозначениями и график работы УТВ приведены в качестве примера.

При проведении испытаний в отсеке в соответствии с настоящей методикой подготавливают его схему, а формы заполняют согласно фактическому наименованию и наличию задействованных при этом устройств, оборудования и приборов.

Рабочая программа оценки герметичности отсека

(от пикета до пикета) (наименование участка и линии метрополитена)
1 Испытание отсека на герметичность проводится комиссией. (Состав комиссии приводите в приложении к программе.)
2 Оценка герметичности отсека выполняется по методике, приведенной в настоящем своде правил.
3 Объект испытания: отсек
(характеристика отсека: длина, заложение, число станций)
4 Дата испытания: «» г.
5 Время проведения испытаний: с по (час., мин.) (час., мин.)
(час., мин.) (час., мин.) 6 Командный пункт испытаний (КПИ) размещается на станции, оборудуется (название)
телефонной связью с измерительными постами на
(указать расположение и число постов)
7 На период испытаний закрываются защитные устройства отсека согласно прилагаемому перечнустройств и графику проведения испытаний.
8 Режим работы УТВ в период проведения испытаний отражается в графике.
9 Подпор (давление) воздуха в отсеке обеспечивается нагнетанием воздуха УТВ №
, режим работы регламентируется графико
(номер по проектной документации)
10 Место замера расхода нагнетаемого в отсек воздуха
11 Способ измерения скорости (расхода) нагнетаемого воздуха
(указать способ)
12 Места измерения величины подпора в отсеке
(указать здесь, показать на схеме)
13 Места контроля возможных утечек воздуха
14 По результатам испытаний составляется протокол.
15 К программе прилагаются:
- состав комиссии;
- перечень защитных устройств в отсеке;
- схема отсека с расположением измерительных постов;
- график работы УТВ и других объектов в отсеке.
Подписи:
Председатель комиссии, представители заказчика, строительной и монтажной организаций, МЧ других заинтересованных организаций
(организация, должность, Ф.И.О.)

Перечень защитных устройств в отсеке № _____ и расстановка сил и средств при оценке его герметичности

	Объекты с	обследования	Защитно-гер устр	ометизирую ройства	щие	Изм	иеряемые параметры возду		Измерительные посты				
№ п.п.	Местона-	Наименова-	Наименование		**		Контрольно-измерител	пьные приборы и сре,	цства	Номер поста	Число наблю-	Ответствен-	
	хождение	ние объекта	устройства	Тип	Число	Параметры воздуха	Наименование прибора	Тип	Число	на схеме	дателей	ный исполни- тель	
_	Станция	УТВ-05	УТВ-05	_	_	_		Анемометр	ACO-3	1	3	2	
	Ь					ход, депрессия, температура, от-	Анемометр	MC-13	1				
						носительная влаж- ность, барометри-	Психрометр	MB-4M	1				
						ческое давление	Микроманометр	ШН-240	1			_	
							Воздухозамерная трубка	ПИТО	2				
							Секундомер	СОСпр-26-2	1				
							Барограф	M-22C	1			-	
		Туалет-03	Задвижка напорная	30 ч	2	Утечка воздуха							
			Гермоклапан	0129300	1		Дымарь	Дымовая трубка	2	4	2		
		Вестибюль	Затвор	3Т-115в	3								
			Дверь	3T-41	2	Утечка воздуха	Дымарь	Дымовая трубка	1	5	2		
						Перепад давления (подпор), температура, относительная влажность, барометрическое давление	Микроманометр	MMH-240	1				
		Северный	Затвор № 2	3T-115a	_		Психрометр	МВ-4м	1				
		вход					Барограф	M-22C	1	6	1		
							Секундомер	СОСпр-26-2	1				
							Штуцер	_	1				

Подписи:		
п тодиноси.		

Карточка защитного устройства

Определение мест утечек воздуха при испытаниях герметичности отсека

				Наименов	ание			Значение						
Отс	ек							-		=				
Раст	юло	женис	;							_				
Наи	мен	овани	e yc	гройства						_				
Тип	устј	ройсті	за		-					_				
Ном	ер и	змери	тел	ьного поста	п (по схеме)					_				
Дата	і обо	следон	зани	Я	_									
Bper	о вм	бслед	ован	ния										
Исп	олні	итель												
Мет	од о	бнару	жен	ия утечки і	воздуха	_								
При	борі	ы и ср	едст	гва обнаруя	кения утечк	и воздуха								
Mec	та у	течки	воз,	духа										
Bo	змо	жные	мес	та утечки в	воздуха:									
- I	рит	воры 1	и за,	делы обрам	ления защи	тного уст	ройства;							
- E	воді	ы ком	мун	икаций (каб	бельные вво	ды, водог	проводные и	т. д.);						
- д	рен	ажи, с	бор	удованные	задвижкой;									
- F	епл	относ	ги в	обделке то	ннеля.									
_														
110	ЭДПИ	юь:												
								ионной съем	ики					
					та									
T	пи	номер	а пр	риборов										
		Время						Параметр	ы воздуха					
No	n:	вмерения		Отсчет	Постоян-	Депрес-	Темпе	ратура, °С			При-			
п/п	ч	мин.	c	по шкале прибора	ная при- бора <i>К</i>	сия <i>H</i> , кгс/м ²			относитель- ная влаж-	барометриче- ское давле-	меча- ние			
							по сухому термометру	по влажному термометру	ность, %	ние, мм рт. ст.				

Протокол № __ воздушной съемки

Объект	
Дата и время съемки	
Исполнители	
Приборы	

								Ане	емоме	тры			Пара	аметры :	возду	xa	По пра				
		тожения											Темпо ра,	ерату- °С		рт. ст.					
№ п/п	Время: ч, мин.	Место измерения. Схема расположения точек замера в сечении	Площадь сечения, м ²	Способ измерения	Номер точки по схеме	Конечный отсчет	Начальный отсчет	Разность в отсчетах	Время замера, с	Число делений в секунду	Скорость воздуха, м/с	Направление потока	по сухому термометру	по влажному термометру	относительная влажность, %	барометрическое давление, мм рт.	на способ замера	на стандартный воздух	Средняя скорость воздуха, м/с	Расход (утечка) воздуха, м 3 /ч	Примечание

Подписи:

Протокол оценки герметичности отсека

(наименование участка, линии)
«
1 Испытания отсека проведены комиссией по методике согласно приложению В настоящего свода правил.
2 Основные данные отсека:
- глубина заложения: максимальная, м минимальная, м
- вид трассы, тип обделки
- протяженность, км
- тип станции A (то же для станций Б, В)
(колонная, пилонная, односводчатая)
- поперечные размеры перегонного тоннеля, м
- площадь поперечного сечения перегонного тоннеля, м ²
- перепад высот между оконечностями отсека, м
- суммарный периметр защитных устройств, м
- периметр защитных устройств на один километр отсека, м/км
- дата проведения испытания «»20г.
3 Определение депрессии естественной тяги в отсеке
3.1 Задействовано герметизирующее оборудование (перечень оборудования прилагается).
3.2 Место замера депрессии естественной тяги
3.3 Параметры воздуха: в отсеке / снаружи
- температура, °С
- относительная влажность, %
- барометрическое давление, мм рт. ст.
3.4 Депрессия естественной тяги, приведенная к стандартному воздуху, h_l , кгс/м ²
4 Оценка герметичности отсека
4.1 Задействовано герметизирующее оборудование (перечень оборудования прилагается).
4.2 Нагнетание воздуха в отсек проводилось
(тип, номер вентилятора, УТВ, напор при максимальном расходе)
4.3 Продолжительность нагнетания воздуха в отсек, ч
4.4 Место и способ замера количества нагнетаемого воздуха
4.5 Площадь замерного сечения, м 2
4.6 Средняя скорость движения воздуха в замерном сечении, м/с

4.7 Параметры воздуха в замерном сечении:
- температура, °С
- относительная влажность, %
- барометрическое давление, мм рт. ст.
4.8 Расход нагнетаемого воздуха на один километр длины отсека, приведенный к стандартным условиям, ${\rm M}^3/{\rm q\cdot KM}$
4.9 Места измерения подпора воздуха в отсеке
4.10 Средний подпор воздуха, приведенный к стандартным условиям, $\mbox{кгc/m}^2$
4.11 Нормируемая утечка в отсеке определена по формуле
4.12 График герметичности отсека — рисунок
4.13 Фактическая герметичность отсека
4.14 Места утечек воздуха
4.15 Перечень работ, выполненных при устранении обнаруженных мест утечек воздуха
4.16 Журналы наблюдений и другие первичные материалы испытания отсека
прилагаются.
(перечень)
ЗАКЛЮЧЕНИЕ (два варианта заключений)
Величина потерь воздуха через неплотности в отсеке ${\rm M}^3/({\rm q\cdot \kappa m})$ при подпоре воздуха ${\rm krc/m}^2$, что больше расчетных значений.
Отсек признан негерметичным.
Для повышения герметичности отсека следует выполнить следующие работы:
(перечисление работ и исполнителей)
после чего провести повторные испытания
(указать объем и виды испытаний)
Величина потерь воздуха через неплотности в отсеке ${\rm M}^3/({\rm q\cdot km})$ при подпоре воздуха ${\rm krc/m}^2$, что меньше расчетных значений.
Отсек признан герметичным.
П р и м е ч а н и е — Принимается одно из двух указанных заключений.
Подписи:

Пример оценки герметичности отсека

Испытания проведены в двухпутном отсеке глубокого заложения протяженностью 2 км. Суммарный периметр защитных устройств в отсеке равен 200 м. Параметры воздуха в замерном сечении:

- температура 10 °C;
- относительная влажность 86 %;
- барометрическое давление 735 мм рт. ст.

Замеренный расход воздуха, подаваемого в отсек вентиляционной установкой, составил в первом испытании $L_{\Phi 1}$ = 4200 м³/ч при $\Delta P_{\Phi 1}$ = 31 кгс/м², во втором испытании $L_{\Phi 1}$ = 6250 м³/ч при $\Delta P_{\Phi 1}$ = 62 кгс/м². После устранения обнаруженных в ходе испытаний неплотностей при повторных испытаниях получены сле-

дующие данные:

 $L_{
m d2}$ = 3200 м³/ч при $\Delta P_{
m d2}$ = 40 кгс/м² и $L_{
m d2}$ = 4800 м³/ч при $\Delta P_{
m d2}$ = 70 кгс/м². Согласно В.1.3 настоящего приложения нормируемую утечку воздуха для испытуемого отсека, м³/ч, при δ = 100 м/км вычисляют по формуле

$$L_{H} = 12,5\Delta P + 2,168\sqrt{\Delta P}$$
 (B.12)

График герметичности отсека представлен на рисунке В.3.

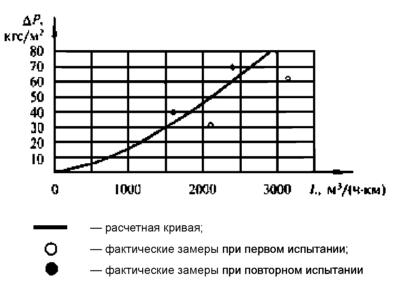


Рисунок В.3 — График характеристики герметичности отсека

Замеренные в первом испытании расходы воздуха (L_3) после приведения их в соответствие с формулой (B.5) равны 2100 и 3125 м 3 /(ч км). Соответствующие значения $\Delta P_{\mathbf{d}}$ равны 31 и 62 кгс/м 2 , так как коэффициент Z для формул (В.3) и (В.6) близок к 1,0.

Результаты повторного испытания после учета поправок равны:

- по расходу воздуха 1600 и 2400 м³/(ч м);
- по подпору 40 и 70 кгс/м² соответственно.

При сопоставлении полученных при испытаниях данных с графиком герметичности данного отсека (рисунок В.3) устанавливается, что его герметичность может быть признана удовлетворительной только после устранения обнаруженных утечек.

Приложение Г (справочное)

Минимальные расстояния между кабельными потоками и ограждающими конструкциями в кабельных сооружениях

Таблица Г.1

				Минимальные расстояния в свету между кабелями в потоке								
Nº	Расположение кабелей в по-	Назначение	Исполнение	при горизонтальн	ой прокладке	при вертикальной прокладке						
п/п	каоелеи в по- токе	кабеля, на- пряжение	кабеля	Нормируемое расстояние	Значение рас- стояния, мм	Нормируемое расстояние	Значение расстояния, мм					
1	Одиночный ряд или слой кабелей	Силовой не более 10 кВ	Общепромыш- ленное	По горизонтали между кабелями в ряду	Дк	По горизонтали между кабелями в ряду	1,5 Дк					
			Общепромыш- ленное с по- крытием ОКП	По горизонтали между кабелями в ряду	Дк	По горизонтали между кабелями в ряду	Дк					
			Нераспро- страняющие горение	По горизонтали между кабелями в ряду	Дк	По горизонтали между кабелями в ряду	Дк					
		Контроль- ный, управ- ления и т. п.	Общепромыш- ленное	По горизонтали между кабелями в ряду	Без зазоров (вплотную)	По горизонтали между кабелями в ряду	1.5 Дк					
			Общепромыш- ленное с по- крытием ОКП	По горизонтали между кабелями в ряду	Без зазоров (вплотную)	По горизонтали между кабелями в ряду	Без зазоров (вплотную)					
			Нераспро- страняющие горение	По горизонтали между кабелями в ряду	Без зазоров (вплотную)	По горизонтали между кабелями в ряду	Без зазоров (вплотную)					
2	Одиночный ряд пучков кабелей	Контроль- ный, управ- ления и т. п.	Общепромыш- ленное	По горизонтали между пучками кабелей в ряду	Без зазоров (вплотную)	По горизонтали между пучками кабелей в ряду	1,5 Дп					

Библиография

- [1] Федеральный закон от 22 июля 2008 г. № 123-ФЗ «Технический регламент о требованиях пожарной безопасности»
- [2] Федеральный закон от 12 февраля 1998 г. № 28-ФЗ «О гражданской обороне»
- [3] Федеральный закон от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений»
- [4] Постановление Правительства Российской Федерации от 29 ноября 1999 г. № 1309 «О порядке создания убежищ и иных объектов гражданской обороны»
- [5] ПУЭ Правила устройства электроустановок
- [6] Федеральные нормы и правила в области промышленной безопасности «Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением»
- [7] КСЦ Метро-2 Отраслевые нормы искусственного освещения производственных объектов и подвижного состава метрополитенов
- [8] Методика расчета герметичности убежищ // Проектирование и строительство защитных сооружений гражданской обороны
- [9] НПБ 242—97 Классификация и методы определения пожарной опасности электрических кабельных линий
- [10] НПБ 244—97 Материалы строительные. Декоративно-отделочные и облицовочные материалы. Материалы для покрытия полов. Кровельные, гидроизоляционные и теплоизоляционные материалы. По-казатели пожарной опасности
- [11] НПБ 249—97 Светильники. Требования пожарной безопасности. Методы испытаний

УДК 699.85:006.354 OKC 13.200

Ключевые слова: защитное сооружение, гражданская оборона, укрытие, противорадиационное укрытие, защитное устройство, динамическая нагрузка, метрополитен

Технический редактор В.Н. Прусакова Корректор Е.Р. Ароян Компьютерная верстка Л.В. Софейчук

Сдано в набор 25.07.2017. Формат 60×84¹/₈. Гарнитура Ариал. Усл. печ. л. 7,44. Подготовлено на основе электронной версии, предоставленной разработчиком свода правил

Набрано в ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www. jurisizdat.ru y-book@mail.ru