ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ FOCT P 52830— 2007 (ИСО 7251:2005)

МИКРОБИОЛОГИЯ ПИЩЕВЫХ ПРОДУКТОВ И КОРМОВ

Метод обнаружения и определения количества презумптивных бактерий *Escherichia coli*. Метод наиболее вероятного числа

ISO 7251:2005

Microbiology of food and animal feeding stuffs —
Horizontal method for the detection and enumeration
of presumptive Escherichia coli —
Most probable number technique
(MOD)

Издание официальное

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН ОАО «ВНИИС» совместно с ГУ «Ярославская государственная испытательная лаборатория молочного сырья и продукции» на основе аутентичного перевода стандарта, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 335 «Методы испытаний агропромышленной продукции на безопасность»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2007 г. № 457-ст
- 4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 7251:2005 «Микробиология пищевых продуктов и кормов. Метод обнаружения и определения количества презумтивных бактерий Escherichia coli. Метод наиболее вероятного числа» (ISO 7251:2005 «Microbiology of food and animal feeding stuffs Horizontal method for the detection and enumeration of presumptive Escherichia coli Most probable number technique»). При этом дополнительные слова, фразы, абзацы, включенные в текст стандарта для учета потребностей национальной экономики Российской Федерации и особенностей российской национальной стандартизации, выделены курсивом.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5—2004 (подраздел 3.5)

- 5 ВВЕДЕН ВПЕРВЫЕ
- 6 ПЕРЕИЗДАНИЕ. Июнь 2009 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2008 © СТАНДАРТИНФОРМ, 2009

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Область применения
2	Нормативные ссылки
3	Термины и определения
4	Принцип метода
	4.1 Метод качественного определения
	4.2 Метод количественного определения
5	Разведение, питательные среды и реактивы
6	Оборудование и лабораторная посуда
7	Отбор проб
8	Подготовка проб
9	Проведение определения
	9.1 Метод качественного определения
	9.2 Метод количественного определения
10	0 Результаты определения
	10.1 Метод качественного определения
	10.2 Метод количественного определения
1	1 Протокол испытания
П	риложение А (обязательное) Расчет наиболее вероятного числа (НВЧ)
Б	иблиография

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИКРОБИОЛОГИЯ ПИЩЕВЫХ ПРОДУКТОВ И КОРМОВ

Метод обнаружения и определения количества презумптивных бактерий *Escherichia coli*.

Метод наиболее вероятного числа

Microbiology of food and feeding stuffs.

Method for the detection and enumeration of presumptive Escherichia coli. Most probable number technique

Дата введения — 2009—01—01

1 Область применения

Настоящий стандарт устанавливает метод обнаружения и определения количества презумптивных бактерий Escherichia coli методом культивирования в жидких питательных средах и расчета наиболее вероятного числа (НВЧ) после инкубации при температуре 37 °C и 44 °C.

Настоящий стандарт применяется при исследовании продуктов, предназначенных для употребления в пищу человеком и для кормления животных, а также образцов окружающей среды в местах производства и оборота пищевых продуктов.

 Π р и м е ч а н и е — Некоторые патогенные штаммы Escherichia coli не растут при температуре 44 °C.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р 51426—99 (ИСО 6887—83) Микробиология. Корма, комбикорма, комбикормовое сырье. Общее руководство по приготовлению разведений для микробиологических исследований

ГОСТ Р 51446—99 (ИСО 7218—96) Микробиология. Продукты пищевые. Общие правила микробиологических исследований

ГОСТР 51448-99 (ИСО 3100-2—88) Мясо и мясные продукты. Методы подготовки проб для микробиологических исследований

ГОСТ 26668—85 Продукты пищевые и вкусовые. Методы отбора проб для микробиологических анализов

ГОСТ 26669—85 Продукты пищевые и вкусовые. Подготовка проб для микробиологических анализов

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

- 3.1 **презумптивная** *Escherichia coli* (presumptive *Escherichia coli*): Бактерия, ферментирующая при *температуре* 44 °C лактозу с образованием газа и образующая индол из триптофана при проведении опыта в соответствии с методом, указанным в настоящем стандарте.
- 3.2 количество презумптивных бактерий *Escherichia coli*: Наиболее вероятное число E.coli в см³ или г образца при условии проведения опыта в соответствии с методом, указанным в настоящем стандарте.

4 Принцип метода

4.1 Метод качественного определения

- 4.1.1 Определенное количество первичного разведения образца вносят в пробирку с жидкой селективной обогатительной средой.
- 4.1.2 Пробирку инкубируют до 48 ч при *температуре* 37 °C. Для обнаружения газообразования пробирку проверяют через 24 и 48 ч инкубации.
- 4.1.3 При обнаружении затемнения, образования хлопьев или вспенивания среды проводят пересев в пробирку с жидкой селективной средой (ЕС-бульон).
- 4.1.4 После пересева согласно 4.1.3 пробирку инкубируют до 48 ч при *температуре* 44 °C. Для обнаружения газообразования пробирку проверяют через 24 и 48 ч инкубации.
- 4.1.5 При обнаружении вспенивания среды в пробирке после инкубации согласно 4.1.4 проводят пересев в пробирку с безиндольной пептонной водой.
- 4.1.6 После пересева согласно 4.1.5 пробирку инкубируют до 48 ч при *температуре* 44 °C. Пробирку проверяют для обнаружения образования индола при распаде триптофана в составе пептона.
- 4.1.7 Пробирки с затемнением, образованием хлопьев или газообразованием в жидкой селективной обогатительной среде (см. 4.1.1), при пересеве из которых в ЕС-бульон обнаружилось газообразование и образование индола в пептонной воде при температуре 44 °C, расцениваются как содержащие презумптивную Escherichia coli. Результат выражается как «презумптивная Escherichia coli обнаружена» или «презумптивная Escherichia coli не обнаружена (отсутствует)» в граммах или см³ продукта.

4.2 Метод количественного определения

- 4.2.1 Определенное количество первичного разведения образца вносят в три пробирки с жидкой селективной обогатительной средой двойной концентрации.
- 4.2.2 Определенное количество первичного разведения образца вносят в три пробирки с жидкой обогатительной средой одинарной концентрации. Затем в аналогичных условиях определенные количества десятикратного разведения образца вносят в другие три пробирки с жидкой обогатительной средой одинарной концентрации.
- 4.2.3 Пробирки со средами двойной и одинарной концентрации инкубируют до 48 ч при *температуре* 37 °C. После 24 и 48 ч инкубации пробирки исследуют для обнаружения газообразования.
- 4.2.4 Из каждой пробирки со средой двойной концентрации, в которой обнаружено затемнение, образование хлопьев или вспенивание среды, а также из каждой пробирки со средой одинарной концентрации, в которой обнаружено вспенивание, *осуществляют* пересев в пробирку с жидкой селективной средой (ЕС-бульон).
- 4.2.5 После пересева согласно 4.2.4 пробирки инкубируют до 48 ч при *температуре* 44 °C. Для обнаружения газообразования пробирки проверяют через 24 и 48 ч инкубации.
- 4.2.6 При обнаружении вспенивания среды в пробирках после инкубации согласно 4.2.5 проводят пересев из них в пробирки с безиндольной пептонной водой.
- 4.2.7 После пересева согласно 4.2.6 пробирку инкубируют до 48 ч при *температуре* 44 °C. Пробирки проверяют для обнаружения образования индола при распаде триптофана в составе пептона.
- 4.2.8 Наиболее вероятное число *Escherichia coli* рассчитывают с помощью таблицы НВЧ (приложение A), в зависимости от числа пробирок с селективной обогатительной средой одинарной и двойной концентрации, при пересеве из которых в ЕС-бульон обнаружилось газообразование и образование индола в пептонной воде при *температуре* 44 °C.

5 Разведение, питательные среды и реактивы

Для текущей лабораторной практики применяют ГОСТ Р 51446.

5.1 Разведения

В общем случае согласно ГОСТР 51426, для молочных продуктов — [1].

5.2 Селективная обогатительная среда (бульон с лаурилсульфатом)

5.2.1 Состав среды — в соответствии с таблицей 1.

Таблица 1

Состав среды	а) <i>Для среды</i> двойной концентрации	b) <i>Для среды</i> одинарной концентрации
Ферментативный перевар растительных и животных тканей, г	40,0	20,0
Лактоза, г	10,0	5,0
Моногидрофосфат калия (K_2HPO_4), г	5,5	2,75
Дигидрофосфат калия (KH₂PO₄), г	5,5	2,75
Хлорид натрия, г	10,0	5,0
Лаурилсульфат натрия [CH₃(CH₂)₁₁OSO₃Na], г	0,2	0,1
Вода, см ³	1000	1000

5.2.2 Приготовление среды

Растворяют компоненты среды или готовую дегидратированную питательную среду в воде, при необходимости подогревают. Устанавливают уровень pH, чтобы после стерилизации он соответствовал (6.8 ± 0.2) при $memnepamype\ 25\ ^{\circ}C$.

Среду одинарной концентрации разливают по 9 см³ в пробирки 16×160 мм (см. 6.4) с пробирками-поплавками Дарема (*Уленгута*) (см. 6.6), среду двойной концентрации разливают по 10 см³ в пробирки 18×180 мм (см. 6.4) с пробирками-поплавками Дарема (*Уленгута*) (см. 6.6).

Стерилизуют в автоклаве (см. 6.1) 15 мин при температуре 121°C.

После стерилизации пробирки-поплавки Дарема (*Уленгут*па) не должны содержать пузырьков воздуха.

5.3 ЕС-бульон (селективная среда)

5.3.1 Состав:

ферментативный перевар казеина 20,0 г;
лактоза
желчные соли № 3 [2]
моногидрофосфат калия (K_2HPO_4) 4,0 г;
дигидрофосфат калия (KH_2PO_4)
хлорид натрия
вода

5.3.2 Приготовление среды

Растворяют компоненты среды или готовую дегидратированную питательную среду в воде, при необходимости подогревают. Устанавливают уровень pH, при необходимости, чтобы после стерилизации он соответствовал (6.8 ± 0.2) при $memnepamype\ 25$ °C.

Среду разливают по 10 см 3 в пробирки 16 \times 160 мм (см. 6.4) с пробирками-поплавками Дарема (Уленгута) (см. 6.6).

Стерилизуют в автоклаве (см. 6.1) 15 мин при *температуре* 121 °C.

После стерилизации пробирки-поплавки Дарема (*Уленгута*) не должны содержать пузырьков воздуха.

5.3.3 Проверка пригодности и обеспечение качества питательных сред согласно [3] и [4].

5.4 Пептонная вода безиндольная

5.4.1 Состав:

5.4.2 Растворяют компоненты среды или готовую дегидратированную питательную среду в воде, при необходимости подогревают. Доводят pH, если необходимо, до такого значения, чтобы после стерилизации оно составляло $(7,3\pm0,2)$ при $memnepamype\ 25\ ^{\circ}C$.

Среду разливают по 5—10 см 3 в пробирки 16×160 мм (см. 6.4).

Стерилизуют в автоклаве (см. 6.1) 15 мин при *температуре* 121 °C.

5.5 Реактив для определения индола (реактив Ковача)

5.5.1 Состав:

5.5.2 Приготовление реактива

Растворяют 4-диметиламинобензальдегид в 2-метилбутан-1-оле или пентан-1-оле при нагревании на водяной бане, поддерживающей температуру *om* 50 °C *до* 55 °C.

Охлаждают и добавляют соляную кислоту.

Хранят *реактив*, защищенный от света, при температуре около 4 °C (ГОСТР 51446).

Цвет реактива должен быть от светло-желтого до светло-коричневого.

Примечание — Допускается использовать готовые коммерческие реактивы.

6 Оборудование и лабораторная посуда

П р и м е ч а н и е — При одинаковой спецификации одноразовое оборудование предпочтительнее многоразового.

Обычное лабораторное оборудование, а также следующее:

- 6.1 Стерилизаторы сухожаровые (печи) или паровые (автоклавы) по ГОСТР 51446.
- 6.2 Термостат, поддерживающий температуру (37 \pm 1) °C и (44 \pm 1) °C.
- 6.3 Водяная баня, поддерживающая температуру (44 \pm 1) °C.
- 6.4 Пробирки размерами 16×160 мм и 18×180 мм или 20×200 мм.
- 6.5 Бактериологическая петля из платино-иридиевого или никель-хромового сплава диаметром около 3 мм, вмещающая за один раз около 10 мм³ среды.
 - 6.6 Пробирки-поплавки Дарема (Уленгута), свободно помещающиеся в пробирки (см. 6.4).
 - 6.7 Пипетки с полным сливом номинальным объемом от 1 до 10 см³.
 - 6.8 рН-метр с разрешением 0,01 единиц рН и точностью \pm 0,1 рН при *температуре* 25 °C.

7 Отбор проб

В лабораторию направляется представительный образец. Образец не должен быть поврежден или изменен в процессе транспортирования или хранения.

Отбор проб проводят в соответствии с ГОСТ 26668. Рекомендуется достижение соглашения заинтересованных сторон по отбору проб конкретного продукта при отсутствии соответствующего стандарта.

8 Подготовка проб

Подготовку проб проводят в соответствии с *ГОСТ Р 51448 и ГОСТ 26669*. Рекомендуется достижение соглашения заинтересованных сторон *по* подготовке проб конкретного продукта при отсутствии соответствующего стандарта.

9 Проведение определения

9.1 Метод качественного определения

9.1.1 Приготовление пробы и первичного разведения в зависимости от вида продукта согласно ГОСТ Р 51426, ГОСТ Р 51448, ГОСТ 26669, [5], [6] или [7].

Cocmas EC-бульона с лаурилсульфатом при определенной концентрации согласно таблице 1 a) u b).

Добавляют 1 см³ первичного разведения к 9 см³ бульона с лаурилсульфатом одинарной концентрации (0,1 г или 0,1 см³ образца) или $10 \, \text{см}^3$ первоначального разведения к $10 \, \text{см}^3$ бульона с лаурилсульфатом двойной концентрации (1 г или $1 \, \text{см}^3$ образца). Для бо́льших объемов пробы первичное разведение приготавливают добавлением $0,1 \, \text{см}^3$ или $0,1 \, \text{г}$ к $9 \, \text{см}^3$ разбавителя ($\Gamma OCTP \, 51426 \, \text{или} \, [7]$), затем добавляют весь объем первичного разведения к $90 \, \text{см}^3$ бульона с лаурилсульфатом одинарной концентрации. Например, добавляют $5 \, \text{см}^3$ или $5 \, \text{г}$ образца к $45 \, \text{см}^3$ разбавителя, и весь объем начальной суспензии вносят в $450 \, \text{см}^3$ бульона с лаурилсульфатом одинарной концентрации или вносят пробу в равный объем.

9.1.2 Инкубация селективного обогатительного бульона (бульона с лаурилсульфатом)

Инокулированный бульон с лаурилсульфатом одинарной или двойной концентрации (см. 5.2) инкубируют в термостате (см. 6.2), при температуре 37 °C в течение (24 \pm 2) ч. Если на этой стадии не обнаруживают ни газообразования, ни замутнения среды, затрудняющего определение газообразования, продолжают инкубацию до (48 \pm 2) ч.

 Π р и м е ч а н и е — Время инкубации проб живых моллюсков должно составлять (48 \pm 2) ч.

При исследовании некоторых молочных продуктов (например, казеина) пробирки-поплавки Дарема могут застревать на дне пробирки с селективной обогатительной средой. Если после 48 ч инкубации в пробирке обнаруживается лишь помутнение без газообразования, то также осуществляют пересев в ЕС-бульон согласно 9.1.3.

9.1.3 Инокуляция и инкубация селективной среды (ЕС-бульона)

При обнаружении помутнения, выпадения осадка или видимого газообразования после инкубации (см. 9.1.2) селективной среды двойной концентрации или при обнаружении видимого газообразования после инкубации селективной среды одинарной концентрации с помощью бактериологической петли (см. 6.5) проводят пересев в пробирку с EC-бульоном. Инокулированный EC-бульон инкубируют на водяной бане (см. 6.3) или в термостате (см. 6.2) (24 \pm 2) ч при температуре 44 °C. Если на этой стадии не обнаруживают видимого газообразования в EC-бульоне (см. 5.3), то общее время инкубации продлевают до (48 \pm 2) ч.

П р и м е ч а н и е — Общее время инкубации проб живых моллюсков должно составлять (24 ± 2) ч.

9.1.4 Инокуляция и инкубация пептонной воды

При обнаружении видимого газообразования после инкубации согласно $9.1.3\,c$ помощью бактериологической петли (см. 6.5) производят пересев в пробирку с пептонной водой (см. 5.4), предварительно прогретой до *температуры* $44\,^{\circ}$ C. Инкубируют (48 ± 2) ч при *температуре* $44\,^{\circ}$ C.

9.1.5 Обнаружение образования индола

В пробирку с пептонной водой (см. 5.4) после инкубации согласно 9.1.4 добавляют 0,5 см³ реактива на индол (см. 5.5). После интенсивного перемешивания через 1 мин проводят оценку реакции. Красное окрашивание в спиртовой фазе свидетельствует о наличии индола.

9.1.6 Оценка результатов

При обнаружении видимого газообразования в пробирке с ЕС-бульоном и образования индола в пробирке с пептонной водой (см. 9.1.2—9.1.4) селективную обогатительную среду *оценивают* как положительную (презумптивная *Escherichia coli* обнаружена).

9.2 Метод количественного определения

9.2.1 Приготовление пробы и первичного разведения в зависимости от вида продукта согласно ГОСТ Р 51426, ГОСТ Р 51448, ГОСТ 26669, [5], [6] или [7].

Подготавливают достаточное число разведений, чтобы в максимальном разведении с уверенностью получить отрицательный результат.

9.2.2 Инокуляция и инкубация селективного обогатительного бульона (бульона с лаурилсульфатом)

- 9.2.2.1 Подготавливают ряд последовательных разведений, по три пробирки на каждое разведение. Для проб живых моллюсков и некоторых других особых продуктов, а также для получения большей точности результатов необходимо использовать по пять пробирок на каждое разведение (см. приложение A).
- 9.2.2.2 Берут три пробирки с селективной обогатительной средой двойной концентрации [см. *таблицу 1* а)] и, используя стерильную пипетку (см. 6.7), в каждую пробирку вносят по 10 см³ первичного разведения. Таким образом, каждая пробирка этого ряда будет содержать по 1 г образца.
- 9.2.2.3 Берут три пробирки с селективной обогатительной средой одинарной концентрации [см. таблицу 1 b)] и, используя новую стерильную пипетку (см. 6.7), в каждую пробирку вносят по 1 см³ первичного разведения. Таким образом, каждая пробирка этого ряда будет содержать по 0,1 г образца.
- 9.2.2.4 Для каждого последующего разведения (соответствующего 0,01 г, 0,001 г и т.д. продукта на пробирку) повторяют процедуру, как в 9.2.2.3, используя для каждого разведения новую пипетку. Инокулят и среду тщательно перемешивают.
- 9.2.2.5 Инокулированные среды с лаурилсульфатом двойной по 9.2.2.1 или одинарной концентрации по 9.2.2.3 и 9.2.2.4 инкубируют в термостате (см. 6.2) *при температуре* 37 °C в течение (24 ± 2) ч. Если на этой стадии не обнаруживают ни газообразования, ни замутнения среды, затрудняющего определение газообразования, продолжают инкубацию до (48 ± 2) ч.

 Π р и м е ч а н и е — Время инкубации проб живых моллюсков должно составлять (48 \pm 2) ч.

При исследовании некоторых молочных продуктов (например, казеина) пробирки-поплавки Дарема могут застревать на дне пробирки с селективной обогатительной средой. Если после 48 ч инкубации в пробирке обнаруживается лишь помутнение без газообразования, то также осуществляют пересев в ЕС-бульон согласно 9.2.3.

9.2.3 Инокуляция и инкубация селективной среды (ЕС-бульона)

- 9.2.3.1 При обнаружении помутнения, выпадения осадка или видимого газообразования после инкубации селективной среды двойной концентрации [см. *таблицу 1* а)] согласно 9.2.2.5 или при обнаружении видимого газообразования после инкубации селективной среды одинарной концентрации [см. *таблицу 1* b)] согласно 9.2.2.5 с помощью бактериологической петли (см. 6.5) проводят пересев в пробирку с EC-бульоном (см. 5.3).
- 9.2.3.2 Инокулированный согласно 9.2.3.1 EC-бульон инкубируют на водяной бане (см. 6.3) или в термостате (см. 6.2) (24 ± 2) ч при температуре 44 °C. Если на этой стадии не обнаруживают видимого газообразования в EC-бульоне (см. 5.3), то общее время инкубации продлевают до (48 ± 2) ч.

 Π р и м е ч а н и е — Общее время инкубации проб живых моллюсков должно составлять (24 \pm 2) ч.

9.2.4 Инокуляция и инкубация пептонной воды

При обнаружении видимого газообразования после инкубации согласно 9.2.3.2 с помощью бактериологической петли (см. 6.5) производят пересев в пробирку с пептонной водой (см. 5.4), предварительно прогретой до memnepamypы 44 °C. Инкубируют (48 \pm 2) ч npu memnepamype 44 °C.

9.2.5 Обнаружение образования индола

В пробирку с пептонной водой (см. 5.4) после инкубации согласно 9.2.4 добавляют 0,5 см³ реактива на индол (см. 5.5). После интенсивного перемешивания через 1 мин проводят оценку реакции. Красное окрашивание в спиртовой фазе свидетельствует о наличии индола.

9.2.6 Оценка результатов

При обнаружении видимого газообразования в пробирке с ЕС-бульоном и образования индола в пробирке с пептонной водой (см. 9.2.2—9.2.4) селективную обогатительную среду оценивают как положительную (презумптивная Escherichia coli обнаружена).

Для каждого разведения определяют число положительных результатов для среды двойной концентрации [см. *таблицу 1* a)] и одинарной концентрации [см. *таблицу 1* b)].

10 Результаты определения

10.1 Метод качественного определения

Исходя из оценки результатов (см. 9.1.6), конечный результат *определения* выражают как «презумптивная *Escherichia coli* обнаружена» или «не обнаружена (отсутствует)» в данном объеме пробы, указывая массу пробы в граммах или объем пробы в см³.

10.2 Метод количественного определения

Расчет НВЧ проводят согласно приложению А.

Пример — При исследовании твердого образца и использовании трех пробирок на разведение для 95% случаев доверительный интервал составляет от 13 до 200 презумптивных Escherichia coli в грамме при HBЧ 7.4×10 презумптивных Escherichia coli в грамме и от 4 до 99 презумптивных Escherichia coli в грамме при HBЧ 2.4×10 презумптивных Escherichia coli в грамме.

11 Протокол испытания

В протоколе испытания указывают:

- всю информацию, необходимую для полной идентификации образца;
- метод отбора пробы, если известен;
- использованный метод испытания со ссылкой на настоящий стандарт;
- все детали исследования, не оговариваемые в настоящем стандарте, или рассматриваемые как необязательные, а также детали иного свойства, могущие оказать влияние на результаты исследований;
 - полученные результаты.

Приложение А (обязательное)

Расчет наиболее вероятного числа (НВЧ)

- А.1 Расчет НВЧ при использовании трех пробирок по ГОСТ Р 51446. А.2 Расчет НВЧ при использовании пяти пробирок представлен в таблице А.1

Таблица А.1

пробиро	положит к трех вь разведени	ібранных	нвч		•		одновреме об в количе		Действительное число микроорганизмов в 1 г (см³) с вероятностью				
,			1151					95 %		99 %			
1,0	0,1	0,01		1	2	3	5	10	om	до	om	до	
0	0	0	< 0,18	_	_	_	_	_	0,00	0,65	0,00	0,93	
0	0	1	0,18	2	2	2	1	1	0,00	0,65	0,00	0,93	
0	1	0	0,18	2	2	2	1	1	0,01	0,65	0,00	0,93	
0	1	1	0,36	3	3	3	2	2	0,07	0,99	0,02	1,40	
0	2	0	0,37	3	2	2	2	1	0,07	0,99	0,02	1,40	
0	2	1	0,55	0	0	0	3	3	0,17	1,40	0,09	2,10	
0	3	0	0,56	0	3	3	3	3	0,17	1,40	0,09	2,10	
1	0	0	0,20	1	1	1	1	1	0,02	0,99	0,01	1,40	
1	0	1	0,40	2	1	1	1	1	0,07	1,00	0,02	1,40	
1	0	2	0,60	0	0	3	3	3	0,17	1,40	0,09	2,10	
1	1	0	0,40	1	1	1	1	1	0,07	1,10	0,03	1,40	
1	1	1	0,61	3	2	2	2	1	0,17	1,40	0,09	2,10	
1	1	2	0,81	0	0	0	0	3	0,33	2,20	0,20	2,80	
1	2	0	0,61	2	1	1	1	1	0,18	1,40	0,09	2,10	
1	2	1	0,82	3	3	3	3	2	0,33	2,20	0,20	2,80	
1	3	0	0,83	3	3	3	3	2	0,33	2,20	0,20	2,80	
1	3	1	1,0	0	0	0	0	3	0,3	2,2	0,2	2,8	
1	4	0	1,1	0	0	0	0	3	0,3	2,2	0,2	2,8	
2	0	0	0,45	1	1	1	1	1	0,08	1,4	0,04	2,10	
2	0	1	0,68	2	1	1	1	1	0,18	1,50	0,09	2,10	
2	0	2	0,91	0	3	3	3	3	0,33	2,20	0,20	2,80	
2	1	0	0,68	1	1	1	1	1	0,19	1,70	0,10	2,30	
2	1	1	0,92	2	2	1	1	1	0,33	2,20	0,20	2,80	
2	1	2	1,2	0	0	3	3	3	0,4	2,5	0,2	3,4	
2	2	0	0,93	1	1	1	1	1	0,34	2,20	0,20	2,80	
2	2	1	1,2	3	3	2	2	2	0,4	2,5	0,2	3,4	
2	2	2	1,4	0	0	0	0	3	0,6	3,4	0,4	4,4	
2	3	0	1,2	3	2	2	2	1	0,4	2,5	0,2	3,4	
2	3	1	1,4	0	3	3	3	3	0,6	3,4	0,4	4,4	
2	4	0	1,5	0	3	3	3	3	0,6	3,4	0,4	4,4	

Продолжение таблицы А.1

Число положительных пробирок трех выбранных разведений НВЧ			трех выбранных							Действительное число микроорганизмов в 1 г (см³) с вероятностью				
			.,			95 %		99 %						
1,0	0,1	0,01		1	2	3	5	10	om	до	om	до		
3	0	0	0,78	1	1	1	1	1	0,21	2,20	0,12	2,80		
3	0	1	1,1	1	1	1	1	1	0,4	2,2	0,2	2,9		
3	0	2	1,3	3	3	3	2	2	0,6	3,4	0,4	4,4		
3	1	0	1,1	1	1	1	1	1	0,4	2,5	0,2	3,4		
3	1	1	1,4	2	1	1	1	1	0,6	3,4	0,4	4,4		
3	1	2	1,7	3	3	3	3	2	0,6	3,4	0,4	4,4		
3	2	0	1,4	1	1	1	1	1	0,6	3,4	0,4	4,4		
3	2	1	1,7	2	2	2	1	1	0,7	3,9	0,5	5,1		
3	2	2	2,0	0	3	3	3	3	0,7	3,9	0,5	5,2		
3	3	0	1,7	2	2	1	1	1	0,7	3,9	0,5	5,2		
3	3	1	2,1	3	3	3	2	2	0,7	3,9	0,5	5,2		
3	3	2	2,4	0	0	0	3	3	1,0	6,6	0,7	9,4		
3	4	0	2,1	3	3	2	2	2	0,7	4,0	0,5	5,2		
3	4	1	2,4	0	3	3	3	3	1,0	6,6	0,7	9,4		
3	5	0	2,5	0	0	0	3	3	1,0	6,6	0,7	9,4		
4	0	0	1,3	1	1	1	1	1	0,4	3,4	0,3	4,4		
4	0	1	1,7	1	1	1	1	1	0,5	3,4	0,4	4,4		
4	0	2	2,1	3	2	2	2	2	0,7	3,9	0,5	5,2		
4	0	3	2,5	0	0	0	0	3	1,0	6,6	0,7	9,4		
4	1	0	1,7	1	1	1	1	1	0,6	3,9	0,4	5,1		
4	1	1	2,1	1	1	1	1	1	0,7	4,1	0,5	5,3		
4	1	2	2,6	3	3	2	2	2	1,0	6,6	0,7	9,4		
4	1	3	3,1	0	0	0	0	3	1,0	6,6	0,7	9,4		
4	2	0	2,2	1	1	1	1	1	0,7	4,8	0,5	6,1		
4	2	1	2,6	2	1	1	1	1	1,0	6,6	0,7	9,4		
4	2	2	3,2	3	3	3	2	2	1,0	6,6	0,7	9,4		
4	2	3	3,8	0	0	0	0	3	1,3	10,0	0,9	14,7		
4	3	0	2,7	1	1	1	1	1	1,0	6,6	0,7	9,4		
4	3	1	3,3	2	2	1	1	1	1,0	6,6	0,7	9,4		
4	3	2	3,9	3	3	3	3	2	1,3	10,0	0,9	14,7		
4	4	0	3,4	2	2	1	1	1	1,3	10,0	0,9	14,7		
4	4	1	4,0	3	3	2	2	2	1,3	10,0	0,9	14,7		
4	4	2	4,7	0	0	0	3	3	1,4	11,3	0,9	14,7		
4	5	0	4,1	3	3	3	3	2	1,3	10,0	0,9	14,7		
4	5	1	4,8	0	0	3	3	3	1,4	11,3	0,9	14,7		
5	0	0	2,3	1	1	1	1	1	0,7	6,6	0,5	9,4		
5	0	1	3,1	1	1	1	1	1	1,0	6,6	0,7	9,4		

FOCT P 52830—2007

Окончание таблицы А.1

Число положительных пробирок трех выбранных разведений			LIBU		егория* оц нализиров				Действительное число микроорганизмов в 1 г (см³) с вероятностью				
			НВЧ	·			95 %		99 %				
1,0	0,1	0,01		1	2	3	5	10	om	до	om	до	
5	0	2	4,3	3	2	2	2	1	0,3	10,0	0,9	14,7	
5	0	3	5,8	0	0	0	3	3	2,1	14,9	1,4	20,0	
5	1	0	3,3	1	1	1	1	1	1,0	10,0	0,7	14,7	
5	1	1	4,6	1	1	1	1	1	1,4	11,3	0,9	14,7	
5	1	2	6,3	2	2	1	1	1	2,1	14,9	1,4	20,0	
5	1	3	8,4	3	3	3	3	2	3,4	11,0	2,1	27,0	
5	2	0	4,9	1	1	1	1	1	1,5	14,9	0,9	20,0	
5	2	1	7,0	1	1	1	1	1	2,2	16,8	1,4	23,0	
5	2	2	9,4	2	2	1	1	1	3,4	22,0	2,1	28,0	
5	2	3	12	3	3	2	2	2	3	24	2	32	
5	2	4	15	0	0	0	0	3	6	35	4	45	
5	3	0	7,9	1	1	1	1	1	2,3	22,0	1,5	27,0	
5	3	1	11	1	1	1	1	1	3	24	2	32	
5	3	2	14	1	1	1	1	1	5	35	3	45	
5	3	3	17	3	2	2	2	1	7	39	4	51	
5	3	4	21	3	3	3	3	2	7	39	4	51	
5	4	0	13	1	1	1	1	1	3	35	3	45	
5	4	1	17	1	1	1	1	1	6	39	4	51	
5	4	2	22	1	1	1	1	1	7	44	4	57	
5	4	3	28	2	1	1	1	1	10	70	6	92	
5	4	4	35	2	2	2	1	1	10	70	6	92	
5	4	5	43	0	0	3	3	3	15	106	9	150	
5	5	0	24	1	1	1	1	1	7	70	4	92	
5	5	1	35	1	1	1	1	1	10	106	6	150	
5	5	2	54	1	1	1	1	1	15	166	10	223	
5	5	3	92	1	1	1	1	1	23	253	15	338	
5	5	4	160	1	1	1	1	1	40	460	20	620	
5	5	5	> 160	1	1	1	1	1	_	_	_	_	

^{*} Для объяснения категорий см. ГОСТ Р 51446.

Примечание — Приведенные результаты основаны на данных источника [8].

Библиография

[1] UCO 8261:2001	Молоко и молочные продукты. Общие руководящие указания по приготовлению проб для испытаний, исходных суспензий и растворов, разведенных 1/10, для микробиологических исследований
[2] ICMSF Microorganisms in	Food, 1988, Vol. 1, p. 280, University of Toronto Press, Toronto, Canada
[3] UCO/TS 11133-1:2000	Микробиология пищевых продуктов и кормов для животных. Руководящие указания по приготовлению и производству культуральных сред. Часть 1. Общие руководящие указания по обеспечению качества приготовления культуральных сред в лаборатории
[4] ИСО/TS 11133-2:2003	Микробиология пищевых продуктов и кормов для животных. Руководящие указания по приготовлению и производству культуральных сред. Часть 2. Практические руководящие указания по эксплуатационным испытаниям культуральных сред
[5] ИСО 6887-3:2003	Микробиология пищевых продуктов и кормов для животных. Подготовка образцов для испытания, исходной суспензии и десятичных разведений для микробиологических исследований. Часть 3. Специальные правила для подготовки рыбы и рыбопродуктов
[6] ИСО 6887-4:2003	Микробиология пищевых продуктов и кормов для животных. Подготовка образцов для испытания, исходной суспензии и десятичных разведений для микробиологических исследований. Часть 4. Специальные правила для подготовки продуктов, кроме молока и молочных продуктов, мяса и мясных продуктов и рыбы и рыбопродуктов
[7] ИСО 8261:2001	Молоко и молочные продукты. Общие руководящие указания по приготовлению проб для испытаний, исходных суспензий и растворов, разведенных 1/10, для микробиологических исследований
[8] De Man, J.C. MPN tables,	, corrected. Eur. J. Appl. Biotechnol., 1983, 17, pp. 301—305

УДК 663/664.777:006.354

OKC 67.040, 65.120 H09

Ключевые слова: пищевые продукты, корма, микробиология, горизонтальный метод обнаружения, презумптивные бактерии, наиболее вероятное число, *Escherichia coli*

Редактор М.И. Максимова Технический редактор В.Н. Прусакова Корректор Т.И. Кононенко Компьютерная верстка И.А. Налейкиной

Подписано в печать 31.07.2009. Формат $60 \times 84\frac{1}{8}$. Бумага офсетная. Гарнитура Ариал. Печать офсетная. Усл. печ. л. 1,86. Уч.-изд. л. 1,30. Тираж 108 экз. Зак. 480.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.
www.gostinfo.ru info@gostinfo.ru
Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.
Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.