МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС) INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT ISO 9289— 2016

ШРОТЫ

Определение свободного остаточного гексана

(ISO 9289:1991, IDT)

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Федеральным государственным бюджетным научным учреждением «Всероссийский научно-исследовательский институт жиров» (ВНИИЖиров) на основе собственного перевода на русский язык англоязычной версии международного стандарта, указанного в пункте 5
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 28 июня 2016 г. № 49)

За принятие проголосовали:

Краткое наименование страны	Код страны	Сокращенное наименование национального органа
по МК (ИСО 3166) 004—97	по МК (ИСО 3166) 004—97	по стандартизации
Армения	AM	Минэкономики Республики Армения
Киргизия	KG	Кыргызстандарт
Россия	RU	Росстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 29 августа 2016 г. № 953-ст межгосударственный стандарт ГОСТ ISO 9289—2016 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2018 г.
- 5 Настоящий стандарт идентичен международному стандарту ISO 9289:1991 «Шроты. Определение свободного остаточного гексана» («Oilseed residues Determination of free residual hexane», IDT)

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

- 6 ВВЕДЕН ВПЕРВЫЕ
- 7 ПЕРЕИЗДАНИЕ. Февраль 2017 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, 2017

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ШРОТЫ

Определение свободного остаточного гексана

Oilseed residues. Determination of free residual hexane

Дата введения — 2018—01—01

1 Область применения

Настоящий стандарт устанавливает метод определения содержания свободного остаточного гексана в шротах из масличных семян после экстракции углеводородными растворителями.

2 Нормативные ссылки

Следующие ссылочные нормативные документы являются обязательными при применении данного документа. Для датированных ссылок применяется только цитированное издание документа. Для недатированных ссылок необходимо использовать самое последнее издание нормативного ссылочного документа (включая любые изменения).

ISO 5500:1986 Oilseed residues — Sampling (Жмыхи и шроты. Отбор проб)

3 Термины и определения

В настоящем стандарте применен термин с соответствующим определением.

3.1 **свободный остаточный гексан (free residual hexane):** Массовая доля летучих углеводородов, под общим названием *гексан*, оставшихся в шроте после экстракции углеводородными растворителями, которая десорбируется непосредственно нагреванием при 80 °C без добавления воды.

Примечание — Содержание выражается в миллиграммах н-гексана на килограмм образца, млн $^{-1}$ (мг/кг).

4 Сущность метода

Десорбция гексана нагреванием при 80 °C в закрытом сосуде после добавления внутреннего стандарта. Определение содержания гексана в свободном пространстве над пробой методом газовой хроматографии с использованием насадочных или капиллярных колонок.

5 Реактивы и материалы

Используют только реактивы известной аналитической степени чистоты, если не указано иное.

5.1 Технический гексан или легкий петролейный эфир, схожий по составу с гексаном, используемым для промышленной экстракции масличных семян, или, в случае отсутствия, н-гексан.

П р и м е ч а н и е — Для калибровки рекомендуется использовать технический гексан. Этот реактив обычно содержит более 50% (по массе) н-гексана и состоит в основном из C_6 — изомеров.

FOCT ISO 9289-2016

5.2 Внутренний стандарт: используют либо 5.2.1, либо 5.2.2.

Примечание — Если технический гексан, используемый для экстракции или калибровки, содержит значительные количества циклогексана, в качестве внутреннего стандарта применяют н-гептан.

- 5.2.1 Циклогексан.
- 5.2.2 Н-гептан.
- 5.3 Газ-носитель, например, водород, азот, гелий и т.д., тщательно высушенный, с содержанием кислорода менее 10 млн⁻¹ (мг/кг).
 - 5.4 Вспомогательные газы.
 - 5.4.1 Водород, 99,9 % чистоты, свободный от органических примесей.
 - 5.4.2 Воздух, свободный от органических примесей.
- 5.5 Для калибровки используют шроты, такого же происхождения, что и анализируемый образец, с содержанием технического гексана не более 70 млн⁻¹ (мг/кг). Если содержание гексана превышает указанное значение, его снижают, рассыпая шрот тонким слоем и оставляя на открытом воздухе в течение нескольких часов.

Промышленные шроты обычно имеют содержание влаги от 12 % (по массе) до 14 % (по массе). Если образцы имеют различную влажность, необходимо выполнять калибровку с помощью шротов, имеющих такое же содержание влаги, как и образец.

6 Аппаратура

Обычное лабораторное оборудование и, в том числе, нижеперечисленное.

- 6.1 Газовый хроматограф с пламенно-ионизационным детектором и интегратором и/или регистратором, снабженный либо
- а) насадочной стеклянной колонкой, около 2 м длиной и внутренним диаметром приблизительно 3,2 мм, заполненной промытой кислотой диатомовой землей с размером частиц от 150 мкм до 180 мкм (пригоден Хромосорб Р NAW 60—80 меш¹⁾) и покрытой 10 % скваланом или метилполисилоксаном (пригоден SE 30¹⁾), или
- б) капиллярной колонкой, длиной около 30 м и внутренним диаметром 0,3 мм, покрытой метилполисилоксаном (пригоден SE 30¹) с толщиной пленки 0,2 мкм.

Температура инжектора и детектора должна быть установлена около 120 °C, а температура печи — около 40 °C. Давление газа-носителя должно быть примерно 0,3 бар (30 кПа).

Если используется капиллярная колонка, прибор должен иметь сплит-систему инжекции 1/100.

П р и м е ч а н и е — Для серийных анализов рекомендуется использовать газовый хроматограф с автоматической инжекцией образца и нагревательной баней.

6.2~ Нагревательная баня, снабженная зажимами для закрепления флаконов, обеспечивающая термостатирование при $80~^{\circ}\text{C} \pm 2~^{\circ}\text{C}$ и поддержание постоянной температуры до $\pm 0.1~^{\circ}\text{C}$.

П р и м е ч а н и е — Для продолжительной работы рекомендуется в качестве теплоносителя использовать глицерин.

- 6.3 Газовый шприц, вместимостью 1 см3.
- 6.4 Флаконы с пробками (6.5), вместимостью $20 \text{ см}^3 \pm 2 \%$.
- 6.5 Пробки, инертные по отношению к гексану, приблизительно 3 мм толщиной, изготовленные из такого материала, как нитрильный каучук (например, Пербунан²)), или бутилкаучук, с прослойкой из политетрафторэтилена или полихлоропрена (например, Неопрен²)).

Необходимо убедиться, что используемые пробки обеспечивают герметичность после обжима.

П р и м е ч а н и е — Пробки часто имеют очень высокую механическую прочность; если предполагают, что можно повредить иглу газового шприца при прокалывании пробки, то предварительно прокалывают ее булавкой, прежде чем отбирать образец из свободного пространства. Повторно использовать пробки не рекомендуется.

- 6.6 Металлические крышки из фольги, например, из алюминия.
- 6.7 Обжимные клещи для укупоривания пробок.
- 6.8 Жидкостные шприцы, вместимостью 10 мм³.

¹⁾ Хромосорб Р NAW 60/80, SE 30. Эта информация приводится для удобства пользователей настоящего стандарта и не связана с поддержкой этого продукта.

²⁾ Пербунан и Неопрен. Эта информация приводится для удобства пользователей настоящего стандарта и не связана с поддержкой этого продукта.

7 Отбор проб и хранение образца

Отбор проб необходимо выполнять в соответствии с ISO 5500*. Важно, чтобы была предотвращена потеря гексана из образца.

Лабораторная проба должна плотно заполнять герметичный контейнер (предпочтительно гофрированная металлическая коробка) и храниться при температуре 4 °C. Нельзя использовать пластиковые контейнеры.

Определение остаточного гексана должно выполняться немедленно после открытия контейнера.

8 Проведение испытания

8.1 Калибровка

- 8.1.1 Взвешивают с точностью до 0,01 г по 5 г шрота для калибровки (5.5) в каждый из пяти флаконов (6.4). Закрывают каждый флакон пробкой (6.5), накрывают крышкой из фольги (6.6) и обжимают клешами (6.7).
- 8.1.2 С помощью шприца (6.8) добавляют растворитель (5.1) в количестве, указанном в таблице 1, в четыре из пяти флаконов. В пятый флакон растворитель не добавляют.

Таблица 1 — Содержание растворителя (5.1) в калибровочных образцах

Номер флакона	1	2	3	4
Объем добавленного растворителя (мкл)	1	2	4	7
Содержание свободного гексана, млн ⁻¹ (мг/кг)	134	268	536	938

П р и м е ч а н и е — Если необходимо проанализировать образцы с содержанием гексана выше наибольшего значения, приведенного в таблице 1, объемы растворителя, используемого для калибровки, должны быть соответственно увеличены.

8.1.3 Оставляют флаконы при комнатной температуре в течение 24 ч.

П р и м е ч а н и е — При меньшей продолжительности абсорбции технический гексан может не полностью абсорбироваться шротом, и, кроме того, равновесие сорбции—десорбции технического гексана между шротом и газовой фазой может не быть достигнуто.

- 8.1.4 По окончании указанного времени в каждый из пяти флаконов сквозь пробку добавляют по 5 мм³ внутреннего стандарта (5.2.1 или 5.2.2) с помощью шприца (6.8).
- $8.1.5\,$ С интервалом 15 мин погружают флаконы один за другим в нагревательную баню (п. 6.2), установленную на $80\,$ °C $\pm 2\,$ °C. Флаконы должны быть погружены в нагревательную жидкость до уровня крышки из фольги.
- 8.1.6 После нагрева каждого из флаконов в течение 60 мин (точно), не вынимая флаконы из нагревательной бани, отбирают по 1 см³ (точно) газовой фазы из свободного пространства над пробой, с помощью газового шприца (6,3), предварительно нагретого до температуры 50—60 °C. Полученную таким образом газовую фазу немедленно инжектируют в хроматограф.
- 8.1.7 По хроматограмме, соответствующей флакону, в который не был добавлен технический гексан, рассчитывают содержание гексана A_c , выраженное в процентах от общей площади пиков.
- 8.1.8 По каждой из хроматограмм, соответствующих каждому из флаконов, в которые добавляли технический гексан, рассчитывают калибровочный фактор *F* по формуле

$$F = \frac{w_h \cdot A_{is}}{(A_i - A_c - A_{is}) \cdot w_{is}},\tag{1}$$

где A_c — содержание гексана, рассчитанное по 8.1.7;

 A_{is}^- — содержание внутреннего стандарта в калибровочном шроте, выраженное в процентах от общей площади пиков;

 A_{l} — общее содержание углеводородов, включая внутренний стандарт, в калибровочном шроте, выраженное в процентах от общей площади пиков;

^{*} На территории Российской Федерации действует ГОСТ 13979.0—86 Жмыхи, шроты и горчичный порошок. Правила приемки и методы отбора проб.

Примечания

- 1 Углеводороды, которые, как правило, входят в состав технического гексана, кроме примерно 50 % н-гексана, это 2-метилпентан, 3-метилпентан, метилциклопентан, циклогексан и т. д.
- 2 Не включают пики продуктов окисления, некоторые из которых могут присутствовать в значительных количествах.
 - w_h содержание свободного гексана в калибровочном шроте (см. таблицу 1), выраженное в миллиграммах на килограмм;
 - w_{is} содержание внутреннего стандарта в калибровочном образце, т. е. 680 для н-гептана или 780 для циклогексана, млн⁻¹ (мг/кг).

Рассчитывают средний калибровочный фактор \overline{F} по результатам четырех калибровочных образцов.

F должен быть равен 1,0 \pm 0,1.

8.2 Проведение анализа

- 8.2.1 Взвешивают 5 г лабораторного образца с точностью до 0,1 г во флаконе (6.4). Немедленно закрывают флакон пробкой (6.5), накрывают крышкой из фольги (6.6) и обжимают с помощью клещей (6.7). Эти операции должны быть выполнены быстро.
- 8.2.2 Вводят 5 мкл внутреннего стандарта (5.2.1 или 5.2.2) сквозь пробку с помощью шприца (6.8) и помещают флакон в нагревательную баню (6.2), установленную на $80 \, ^{\circ}$ C $\pm 2 \, ^{\circ}$ C, точно на $60 \, \text{мин}$. Флакон должен быть погружен в нагревательную жидкость до уровня крышки из фольги.
- 8.2.3 С помощью газового шприца (6.3), предварительно нагретого до температуры 50—60 °С, отбирают точно 1 см³ газовой фазы из свободного пространства над пробой, не удаляя флакон из нагревательной бани. Немедленно вводят полученную пробу газовой фазы в хроматограф.

Выполняют два определения на одном и том же лабораторном образце.

9 Обработка результатов

Содержание свободного остаточного гексана, w, млн⁻¹ (мг/кг), вычисляют по формуле:

$$\mathbf{w} = \frac{(A'_t - A'_{is}) \cdot \overline{F} \cdot \mathbf{w}'_{is}}{A'_{is}},\tag{2}$$

где A_{is}' — содержание внутреннего стандарта в образце, в процентах от суммарной площади пиков;

 A_t' — общее содержание углеводородов, включая внутренний стандарт, в образце, в процентах от суммарной площади пиков;

 \overline{F} — средний калибровочный фактор, определенный по п. 8.1.7:

 w_{is}^{\prime} — содержание внутреннего стандарта в образце, млн⁻¹ (мг/кг), т. е. 680 для н-гептана или 780 для

За окончательный результат принимают среднее арифметическое значение двух определений (п. 8.2) при условии, что удовлетворяются требования повторяемости. Если требования повторяемости не выполняются, результаты отбрасывают и выполняют два новых определения на испытуемых пробах, взятых из того же анализируемого образца.

10 Точность

Межлабораторные испытания, проведенные на международном уровне, в которых приняли участие 13 лабораторий, каждая из которых выполняла по два определения на каждом образце, дали статистические результаты (обработанные в соответствии с [1]), приведенные в таблице 2.

Таблица 2 — Статистические результаты межлабораторных испытаний

		Рапсовый шрот		
Образец	Подсолнечный шрот	Содержание влаги 8,8 % (по массе)	Тот же образец, увлажненный до содержания влаги 12 % (по массе)	
Число лабораторий, оставшихся после исключения выбросов	12	11	12	

Окончание таблицы 2

	Подсолнечный шрот	Рапсовый шрот		
Образец		Содержание влаги 8,8 % (по массе)	Тот же образец, увлажненный до содержания влаги 12 % (по массе)	
Среднее значение содержания свободного остаточного гексана, мг/кг	178	624	599	
Стандартное отклонение повторяемости, s_n мг/кг	12	17	33	
Коэффициент вариации повторяемости, %	6,7	2,7	5,5	
Предел повторяемости, <i>r</i> , мг/кг	34	48	94	
Стандартное отклонение воспроизводимости, $s_{\mathcal{R}}$, мг/кг	55	129	125	
Коэффициент вариации воспроизводимости, %	31	21	21	
Предел воспроизводимости, R , мг/кг	158	364	353	

11 Протокол испытаний

В протоколе испытаний должны быть указаны:

- вся информация, необходимая для полной идентификации образца;
- используемый метод отбора проб, если он известен;
- метод испытания со ссылкой на настоящий стандарт;
- все подробности проведения испытаний, не указанные в настоящем международном стандарте, или рассматриваемые как факультативные, а также подробная информация обо всех инцидентах, которые могли бы повлиять на результаты испытаний;
- полученные результаты испытаний или, если выполнены условия повторяемости, окончательный результат.

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного международного стандарта	Степень соответствия	Обозначение и наименование межгосударственного стандарта
ISO 5500:1986	NEQ	ГОСТ 13979.0—86 Жмыхи, шроты и горчичный порошок. Правила приемки и методы отбора проб
ISO 5725:1986	_	* 1)

^{*} Соответствующий межгосударственный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

Примечание — В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

- NEQ — неэквивалентный.

¹⁾ На территории Российской Федерации действует ГОСТ Р ИСО 5725-2—2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений.

Библиография

[1] ISO 5725:1986

Precision of test methods — Determination of repeatability and reproducibility for a standard test method by inter-laboratory tests
Прецизионность методов — Определение повторяемости и воспроизводимости стандартного метода по результатам межлабораторных испытаний

FOCT ISO 9289—2016

УДК 633.85:543:006.354 МКС 67.200 IDT Ключевые слова: масличные семена, технический гексан, циклогексана н-гептан

Редактор *М.И. Максимова*Технический редактор *В.Н. Прусакова*Корректор *М.С. Кабашова*Компьютерная верстка *И.А. Налейкиной*

Подписано в печать 16.02.2017. Формат $60 \times 84 \frac{1}{8}$. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 0,86. Тираж 10 экз. Зак. 370. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Издано и отпечатано во ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru

150-9289-2