

#### ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

# СПИРТ БУТИЛОВЫЙ НОРМАЛЬНЫЙ ТЕХНИЧЕСКИЙ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

**ΓΟCT 5208-81** 

Издание официальное

E

**E3** 10-9

#### ГОСУЛАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

#### СПИРТ БУТИЛОВЫЙ НОРМАЛЬНЫЙ ТЕХНИЧЕСКИЙ

ГОСТ 5208—81\*

Технические условия

Technical normal butyl alcohol Specifications

Взамен ГОСТ 5208—76

OKIT 2421510000

Постановлением Государственного комитета СССР по стандартам от 22 июня 1981 г. № 3034 срок введения установлен

c <u>01.07.82</u>

Постановлением Госстандарта от 07.05.92 № 465 снято ограничение срока действия

Настоящий стандарт распространяется на технический нормальный бутиловый спирт (н-бутанол), получаемый оксосинтезом, альдолизацией ацетальдегида, брожением и предназначенный для использования в качестве растворителя в лакокрасочной промышленности, а также для синтеза различных органических продуктов, производства реактивов и т.п.

Формула С<sub>4</sub>Н<sub>9</sub>ОН.

Относительная молекулярная масса (по чеждународным атомным массам 1987 г.) — 74.12.

(Измененная редакция, Изм. № 1, 7 3).

### Издание официальное

Перепечатка воспрещена



E

\*Переиздание (октябрь 1996 г) с Изменениями № 1, 2, 3, утвержденными в декабре 1983 г, июле 1985 г, мае 1992 г (ИУС 3—84, 11—85, 8—92)

> © Издательство стандартов, 1981 © ИПК Издательство стандартов, 1997

#### 1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 1.1. Бутиловый спирт должен быть изготовлен в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.
- 1.2. В зависимости от способа получения бутиловый спирт делится на синтетический, получаемый оксосинтезом и альдолизацией ацетальдегида (марка А) и брожения (марка Б).

(Измененная редакция, Изм. № 2, 3).

1.3. По физико-химическим показателям бутиловый спирт должен соответствовать нормам, указанным в табл.1.

Таблина 1

|                                                                       | Норма для марки                       |                                       |                                       |                                       |                                  |
|-----------------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------|
| Наименование<br>показателя                                            | А<br>ОКП 24 2151 0130                 |                                       | Б<br>ОКП 24 2151 0140                 |                                       | Метол                            |
|                                                                       | Высший<br>сорт<br>ОКП 24<br>2151 0133 | Первый<br>сорт<br>ОКП 24<br>2151 0134 | Высший<br>сорт<br>ОКП 24<br>2151 0143 | Первый<br>сорт<br>ОКП 24<br>2151 0144 | анализа                          |
| 1. Цветность по платиново-кобальтовой шкале, единицы Хазена, не более | 10                                    | 10                                    | 10                                    | 10                                    | По ГОСТ<br>14871—76              |
| 2. Плотность при 20°C, г/см <sup>3</sup>                              | 0,809—<br>0,811                       | 0,809—<br>0,811                       | 0,809—<br>0,811                       | 0,809—<br>0,811                       | По ГОСТ<br>18995.1—73,<br>разд.1 |
| 3. Массовая доля бутилового спирта, %, не менее                       | 99,4                                  | 99,0                                  | 99,5                                  | 99,2                                  | По п.4.3                         |
| 4. Массовая доля кислот в пересчете на уксусную кислоту, %, не более  | 0,003                                 | 0,005                                 | 0,003                                 | 0,003                                 | По п.4.4                         |
| 5. Бромное число г брома на 100 г спирта, не более                    | 0,02                                  | 0,05                                  | 0,3                                   | 0,5                                   | По п.4.5                         |

Продолжение

|                                                                                        | Норма для марки                       |                                       |                                       |                                       |                                |
|----------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------|
| Наименование                                                                           | 1 -                                   | A<br>2151 0130                        |                                       | 5<br>2151 0140                        | Метод                          |
| показателя                                                                             | Высший<br>сорт<br>ОКП 24<br>2151 0133 | Первый<br>сорт<br>ОКП 24<br>2151 0134 | Высший<br>сорт<br>ОКП 24<br>2151 0143 | Первый<br>сорт<br>ОКП 24<br>2151 0144 | анализа                        |
| 6. Массовая доля карбонильных соединений в пересчете на масляный альдегид, %, не более | 0,06                                  | 0,10                                  | 0,05                                  | 0,07                                  | По п.4.6                       |
| 7. Массовая доля нелетучего остатка, %, не                                             | 0,0025                                | 0,0025                                | 0,002                                 | 0,002                                 | По п.4.7                       |
| более 8. Массовая доля воды, %, не более                                               | 0,1                                   | 0,2                                   | 0,1                                   | 0,4                                   | По ГОСТ<br>14870—77,<br>разд.2 |

 $\Pi$  р и м е ч а н и е. Показатель 5 для марки Б ПБО «Центрбиохим» определяют по требованию потребителя.

(Измененная редакция, Изм. № 1, 2, 3).

#### 2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

2.1. Бутиловый спирт относится к числу токсичных продуктов 3-го класса опасности (ГОСТ 12.1.005—88).

Пары его могут вызывать раздражение глаз и слизистых оболочек дыхательных путей. При попадании на кожу — вызывает раздражение.

Предельно допустимая концентрация паров в воздухе рабочей зоны  $10 \text{ мг/м}^3$ .

# (Измененная редакция, Изм. № 2, 3).

2.2. При работе с бутиловым спиртом должны применяться герметичные аппараты, оборудование и герметичная транспортная тара. Помещения, в которых проводят работы с бутиловым спиртом,

должны быть офеспечены приточно-вытяжной вентиляцией, а оборудование — местными отсосами

### (Измененная редакция, Изм. № 3).

- 2 3 При сливо-наливных операциях строго соблюдать правила защиты от статического электричества в производствах химической, нефтехимической и нефтеперерабатывающей промышленности
- 2 4 В помещениях для хранения и применения бутилового спирта запрещается обращение с открытым огнем, а также использование инструментов, дающих при ударе искру

Электрооборудование и искусственное освещение должны быть выполнены во взрывобезопасном исполнении

- 2 5 Средства защиты органов дыхания фильтрующий промышленный противогаз с коробкой марки A, слизистых оболочек глаз очки типа ПО-2
- 2 6 Бутиловый спирт относится к числу пожаровзрывоопасных продуктов

| Температура вспышки в закрытом тигле, °С       | 34   |
|------------------------------------------------|------|
| Температура самовоспламенения, °С              | 345  |
| Концентрационные пределы воспламенения паров в |      |
| смеси с воздухом при 100 °C, % (по объему)     |      |
| нижний                                         | 1,7  |
| верхний                                        | 12,0 |
| Температурные пределы воспламенения, °С        |      |
| нижний                                         | 34   |
| верхний                                        | 68   |
|                                                |      |

Категория и группа взрывоопасности — II А-Т2 Класс опасности 3, подкласс 3 3 по ГОСТ 19433-88

- 2 7 Для тушения горящего бутилового спирта использовать тонкораспыленную воду, химическую и воздушно-механическую пену
- 2 8 При разливе бутилового спирта его убирают, посыпая место разлива песком Пропитанный бутиловым спиртом песок выносят в специально отведенное место Остатки продукта смывают водой

Работы по уборке следует проводить при включенной вентиляции с применением фильтрующего противогаза

2 6-2 8 (Измененная редакция, Изм. № 3).

#### 3. ПРАВИЛА ПРИЕМКИ

3.1. Технический бутиловый спирт принимают партиями. Партией считают любое количество бутилового спирта, однородного по своим качественным показателям и оформленного одним документом о качестве.

Каждую цистерну с техническим бутиловым спиртом считают партией.

Документ должен содержать:

наименование предприятия-изготовителя и его товарный знак;

наименование продукта, его марку и сорт;

номер партии;

массу нетто партии;

количество мест в партии;

дату изготовления продукта;

результаты проведенных анализов;

номер документа о качестве;

дату выдачи документа о качестве;

обозначение настоящего стандарта.

На предприятии-изготовителе допускается за партию продукта принимать содержимое одного товарного резервуара, из которого отбирают пробу для анализа.

# (Измененная редакция, Изм. № 2).

- 3.2. Для проверки качества технического бутилового спирта отбирают 10 % единиц продукции, взятых из разных мест партии, но не менее трех, если в партии менее 30 единиц продукции.
- 3.3. При получении неудовлетворительных результатов анализа хотя бы по одному из показателей по нему проводят повторный анализ пробы, отобранной от удвоенной выборки той же партии или удвоенного количества пробы из цистерны. Результаты повторного анализа распространяются на всю партию.

#### 4. МЕТОЛЫ АНАЛИЗА

- 4.1. Пробы бутилового спирта отбирают по ГОСТ 2517—85 из цистерн пробоотборником равными частями сверху, из середины и снизу цистерны и из бочек чистой стеклянной трубкой, погружая ее до дна.
- 4.2. Отобранные точечные пробы соединяют вместе, тщательно перемешивают. Полученную объединенную пробу не менее  $1~{\rm дm}^3$

помещают в чистую сухую склянку, плотно закупоривают пробкой из материала, нерастворяющегося в бутиловом спирте, и пломбируют. На склянку наклеивают этикетку с обозначением: наименования продукта, даты изготовления, обозначения настоящего стандарта, номера партии, даты и места отбора пробы, должности и подписи лица, отобравшего пробу.

4.3. Определение массовой доли бутилового спирта

Массовую долю бутилового спирта рассчитывают, вычитая из 100 % сумму массовых долей примесей, определяемых методом газожидкостной хроматографии с применением «внутреннего эталона» и массовую долю воды в процентах.

(Измененная редакция, Изм. № 3).

4.3.1. Аппаратура и реактивы

Хроматограф газовый с пламенноионизационным детектором.

Микрошприц.

Колонки хроматографические диаметром 3—4 мм и длиной 3—6 м.

Носитель твердый — динохром-H или хроматон-N, или сферохром-2, или хромосорб-W, или поролит с частицами размером 0,160—0,200 или 0,200—0,315 мм.

Фаза неподвижная — полиэтиленгликоль (ПЭГ) марки М-1500— 2000 или полиэтиленгликольадипинат или 1, 2, 3-трицианэтоксипропан.

Газ-носитель — гелий или азот по ГОСТ 9293—74 или аргон по ГОСТ 10157—79.

Воздух сжатый для питания приборов.

Водород технический по ГОСТ 3022-80.

Хлороформ по ГОСТ 20015—88 или хлороформ фармакопейный.

«Эталон внутренний» — H-амиловый спирт с массовой долей основного вещества не менее 98 % или бутанол-2 с массовой долей основного вещества не менее 98 %.

Шкаф сушильный, обеспечивающий нагрев до 300 °C.

Линейка металлическая по ГОСТ 427-75.

Лупа измерительная по ГОСТ 25706-83.

Интегратор.

Посуда фарфоровая лабораторная по ГОСТ 9147-80.

Набор сит с сетками по ГОСТ 6613-86.

Баня водяная.

Весы лабораторные 2-го класса точности по ГОСТ 24104—88 с наибольшим пределом взвешивания 200 г.

## (Измененная редакция, Изм. № 1, 3).

- 4.3.2. Подготовка к анализу
- 4.3.2.1. Проверка чистоты н-амилового спирта «внутреннего эталона»

Массовую долю основного вещества в *н*-амиловом спирте проверяют по данной методике с «внутренним эталоном» и с учетом массовой доли волы.

### 4.3.2.2. Приготовление насадки

Твердый носитель просушивают в сушильном шкафу при 150—160 °C в течение 5—6 ч, охлаждают и просеивают через сито, отбирая фракцию частицами размером 0,160—0,200 мм или 0,200—0,315 мм.

5—10 г неподвижной фазы растворяют в 150—200 см<sup>3</sup> хлороформа и тщательно перемешивают. Затем 40—45 г твердого носителя вносят в раствор. Растворитель выпаривают на водяной бане при 60—80 °C при непрерывном перемешивании.

Колонку заполняют насадкой при легком постукивании, помещают в термостат хроматографа и, не присоединяя к детектору, стабилизируют, продувая газом-носителем со скоростью  $50-70 \text{ cm}^3/\text{мин}$  при медленном подъеме температуры до  $(150\pm5)$  °C не менее 2 ч.

Насадку выдерживают при 150 °C до стабилизации нулевой линии при максимальной чувствительности прибора, но не менее 12 ч.

Вывод газового хроматографа на рабочий режим осуществляют в соответствии с инструкцией, прилагаемой к прибору.

Условия хроматографического разделения и параметры детектирующей системы должны обеспечивать определение примесей при их массовой доле в продукте 0.01 %.

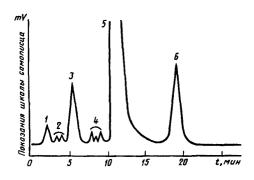
# 4.3.2.3. Режим работы хроматографа

| Длина колонки, м                           | 36      |
|--------------------------------------------|---------|
| Внутренний диаметр колонки, мм             | 3-4     |
| Температура термостата, °С                 |         |
| Температура испарителя, °С                 | 130-150 |
| Расход газа-носителя, см <sup>3</sup> /мин |         |
| Объем пробы, мм <sup>3</sup>               |         |
| Скорость движения диаграммной ленты, мм/ч  |         |

#### C. 8 FOCT 5208-81

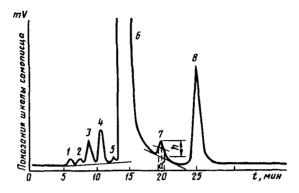
В качестве «внутреннего эталона» применяют *н*-амиловый спирт или бутанол-2. При их наличии в продукте в виде примесей необходимо снять две хроматограммы с введением «внутреннего эталона» и без него.

Хроматограмму снимают при наивысшей чувствительности регистрирующей шкалы самописца.


4.3.2.2, 4.3.2.3. (Измененная редакция, Изм. № 1, 3).

### 4.3.3. Проведение анализа

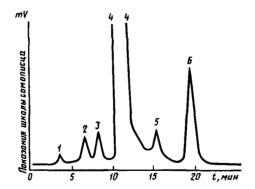
В анализируемую пробу, взвешенную с погрешностью не более 0,0002 г, добавляют  $0,5-1,5\,\%$  «внутреннего эталона», тщательно перемешивают и вводят микрошприцем в испаритель хроматографа установленный объем.


Порядок выхода компонентов и относительное время удерживания указаны на хроматограмме (черт.1—3) и в табл.2.

#### Типовая хроматограмма и-бутанола, получаемого методом альдолизации ацетальдегила



1 — и-масляный альдегид;
 2 — неидентифицированные;
 3 — дибутиловый эфир;
 4 — изобутанол, кротоновый альдегид, бутилацетат;
 5 — и-бутанол;
 6 — и-амиловый спирт


### Типовая хроматограмма н-бутанола, получаемого методом оксосинтеза



1 — дибутиловый эфир, 2 — n-бутилформиат, 3, 5 — неидентифицированные, 4 — изобутанол, 6 — n-бутанол, 7 — изоамиловый спирт, 8 — n-амиловый спирт

# Черт.2

## Типовая хроматограмма н-бутанола, получаемого методом брожения



1, 3— неидентифицированные, 2— n-пропанол, 4— n-бутанол, 5— изоамиловый спирт, 6—n-амиловый спирт

| Компоненты          | Относительное время<br>удерживания |  |
|---------------------|------------------------------------|--|
|                     |                                    |  |
| Ацетон              | 0,13-0,14                          |  |
| н-Масляный альдегид | 0,16-0,17                          |  |
| Этилацетат          | 0,16-0,17                          |  |
| Этанол              | 0,19-0,20                          |  |
| Дибутиловый эфир    | 0,21-0,23                          |  |
| н-Бутилформиат      | 0,29-0,32                          |  |
| н-Пропанол          | 0,29-0,32                          |  |
| Бутанол-2           | 0,29-0,32                          |  |
| Кротоновый альдегид | 0,40-0,41                          |  |
| Изобутанол          | 0,40-0,42                          |  |
| Бутилацетат         | 0.41-0.42                          |  |
| н-Бутанол           | 0.600.62                           |  |
| Изоамиловый спирт   | 0,71-0,80                          |  |
| н-Амиловый спирт    | 1,0                                |  |

### 4.3.4. Обработка результатов

На хроматограмме замеряют площади пиков «внутреннего эталона» и всех примесей.

Площадь пика (S) в мм<sup>2</sup> вычисляют по формуле

$$S = h \cdot \mu_{0.5h}$$
,

где h — высота пика, мм;

 $\mu_{0.5h}$  — ширина пика, измеренная на середине его высоты, мм.

При этом принимают во внимание ширину линии, очерчивающей пик.

Измерение ширины пика производят от внешней линии правой стороны до внутренней линии левой стороны пика измерительной лупой.

Высота пика примесей соответствует отрезку от нулевой линии хроматограммы до вершины пика. Высоту измеряют линейкой.

Допускается определять площадь пика с помощью интегратора.

Сумму массовых долей примесей ( $\Sigma X$ ) в процентах вычисляют по формуле

$$\Sigma X = \frac{b \cdot X_{\text{3T}} \cdot \Sigma S}{S_{\text{3T}}},$$

где b — отношение массы навески «внутреннего эталона» к массе навески анализируемого продукта;

 $X_{97}$  — массовая доля основного вещества во «внутреннем эталоне», %;

 $S_{\rm эт}$  — площадь пика «внутреннего эталона», мм<sup>2</sup>;

 $\Sigma S$  — сумма площадей пиков примесей, мм<sup>2</sup>.

За результат анализа принимают среднее арифметическое двух параллельных определений, допускаемые расхождения между которыми не должны превышать 5 % относительно среднего результата определяемой величины при доверительной вероятности P=0.95.

Массовую долю бутилового спирта ( $X_1$ ) в процентах вычисляют по формуле

$$X_1 = 100 - (\Sigma X + X_B),$$

где  $X_{\rm B}$  — массовая доля воды в бутиловом спирте, %.

4.3.3, 4.3.4. (Измененная редакция, Изм. № 3).

4.4. Определение массовой доли кислот в пересчете на уксусную кислоту

Метод заключается в титровании анализируемой пробы раствором гидроокиси натрия в присутствии в качестве индикатора фенолфталеина.

### (Измененная редакция, Изм. № 1).

4.4.1. Посуда, реактивы и растворы

Пипетка 2-2-50 по НТД.

Колба Кн-2-250-34 ТС по ГОСТ 25336-82.

Бюретки 7-2-10 или 6-2-5 по НТД.

Цилиндры 1(3) — 25—2 и 1(3)—50—2 по ГОСТ 1770—74.

Натрия гидроокись по ГОСТ 4328—77, раствор молярной концентрации c (NaOH)=0,01 моль/дм<sup>3</sup> (0,01 н.); готовят по ГОСТ 25794.1—83.

Спирт этиловый ректификованный технический по ГОСТ 18300—87, высшего сорта.

Фенолфталеин, спиртовой раствор с массовой долей 1 %; готовят по ГОСТ 4919.1—77.

Вода дистиллированная по ГОСТ 6709-72.

(Измененная редакция, Изм. № 1, 2, 3).

4.4.2. Проведение анализа

50 см<sup>3</sup> анализируемого бутилового спирта помещают пипеткой в коническую колбу, затем прибавляют 25 см<sup>3</sup> этилового спирта, нейтрализованного в присутствии фенолфталеина раствором гидроокиси

натрия, и две капли раствора фенолфталеина. Содержимое колбы тщательно перемешивают и титруют из бюретки раствором гидроокиси натрия до появления розовой окраски, не исчезающей в течение 30 с.

(Измененная редакция, Изм. № 1, 3).

4.4.3. Обработка результатов

Массовую долю кислот в пересчете на уксусную кислоту ( $X_2$ ) в процентах вычисляют по формуле

$$X_2 = \frac{V \cdot 0,0006 \cdot 100}{50 \cdot \rho}$$
,

где V — объем раствора гидроокиси натрия концентрации точно 0,01 моль/дм<sup>3</sup>, израсходованный на титрование, см<sup>3</sup>;

р – плотность бутилового спирта, г/см<sup>3</sup>;

0,0006 — масса уксусной кислоты, соответствующая 1 см<sup>3</sup> раствора гидроокиси натрия концентрации точно 0,01 моль/дм<sup>3</sup>, г.

За результат анализа принимают среднее арифметическое двух параллельных определений, допускаемые расхождения между которыми не должны превышать 5 % относительно среднего результата определяемой величины при доверительной вероятности P=0.95.

(Измененная редакция, Изм. № 2).

4.5. Определение бромного числа

Метод заключается во взаимодействии брома с ненасыщенными примесями, содержащимися в анализируемой пробе, и определении их титрованием избытка брома.

(Измененная редакция, Изм. № 1).

4.5.1. Посуда, реактивы и растворы

Пипетки 1(4)-2-2, 2(6)-2-5, 2(6)-2-25 по НТД.

Бюретка 7-2-10 или 6-2-5 по НТД.

Колба Кн-1-100(250)-19/26 ТС по ГОСТ 25336-82.

Кислота соляная по ГОСТ 3118-77.

Калий йодыстый по ГОСТ 4232—74, раствор с массовой долей 5 %.

Калий бромноватокислый по ГОСТ 4457-74.

Калий бромистый по ГОСТ 4160-74.

Натрий серноватисто-кислый (натрия тиосульфат) 5-водный по ГОСТ 27068—86, раствор молярной концентрации  $c~(\mathrm{Na_2S_2O_3\cdot 5H_2O})=0,1$  моль/дм³ (0,1 н.); готовят по ГОСТ 25794.2—83.

Крахмал растворимый по ГОСТ 10163—76, раствор с массовой долей 0,5 %; готовят по ГОСТ 4919.1—77.

Раствор бромноватокислый (бромид-броматный) молярной концентрации c (1/6 KBrO<sub>3</sub>)=0,1 моль/дм<sup>3</sup> (0,1 н.); готовят по ГОСТ 25794.2—83.

### (Измененная редакция, Изм. № 2, 3).

### 4.5.2. Проведение анализа

25 см<sup>3</sup> бутилового спирта вносят пипеткой в коническую колбу, добавляют 2 см<sup>3</sup> соляной кислоты и охлаждают содержимое колбы в воде со льдом в течение 5 мин. Затем приливают из бюретки при перемешивании бромид-броматный раствор до появления неисчезающей желтой окраски и добавляют 1 см<sup>3</sup> бромид-броматного раствора. Колбу плотно закрывают пробкой и охлаждают 3 мин в темном месте.

После этого добавляют в колбу 5 см<sup>3</sup> раствора йодистого калия, закрывают пробкой, оставляют в покое в течение 3 мин и титруют из бюретки выделившийся йод раствором 5-водного серноватисто-кислого натрия до обесцвечивания.

# (Измененная редакция, Изм. № 1, 3).

# 4.5.3. Обработка результатов

Бромное число ( $\dot{X}_3$ ) в граммах брома на 100 г бутилового спирта вычисляют по формуле

$$X_3 = \frac{(V - V_1) \cdot 0,008 \cdot 100}{25 \cdot \rho} ,$$

- где V объем бромид-броматного раствора концентрации точно 0,1 моль/дм<sup>3</sup>, израсходованный на титрование, см<sup>3</sup>;
  - $V_1$  объем раствора 5-водного серноватистокислого натрия концентрации точно 0,1 моль/дм<sup>3</sup>, израсходованный на титрование, см<sup>3</sup>;
  - 0,008 масса брома, соответствующая 1 см<sup>3</sup>, бромид-броматного раствора концентрации точно 0,1 моль/дм<sup>3</sup>, г;
    - плотность бутилового спирта, г/см<sup>3</sup>.

За результат анализа принимают среднее арифметическое двух параллельных определений, допускаемые расхождения между которыми не должны превышать 10 % относительно среднего результата определяемой величины при доверительной вероятности *P*=0,95.

## (Измененная редакция, Изм. № 2, 3).

4.6. Определение массовой доли карбо-

нильных соединений в пересчете на масляный альдегид

Метод заключается в реакции присутствующих в анализируемой пробе альдегидов и кетонов с гидрохлоридом гидроксиламина, в результате которой образуется оксим и соляная кислота, массовую долю которой определяют потенциометрическим титрованием.

4.6.1. Приборы, реактивы и растворы

рН-метр лабораторный.

Электроды каломельный или хлорсеребряный и стеклянный.

Мешалка магнитная.

Стакан В-1(2)—100 ТС по ГОСТ 25336—82.

Пипетки 2(2a, 3)-1(2)-25, 2(2a)-1(2)-50 по НТД.

Бюретки 7-2-10 или 6-2-5 по HTД.

Колбы 1-1000-2 или 2-1000-2 по ГОСТ 1770-74.

Растворы буферные с рН 2,5—3,5, готовят по ГОСТ 4919.2—77.

Спирт этиловый ректификованный технический по ГОСТ 18300—87.

Гидроксиламина гидрохлорид по ГОСТ 5456—79, спиртовой раствор, готовят следующим образом: 7 г гидрохлорида гидроксиламина растворяют в  $100 \text{ см}^3$  дистиллированной воды и доводят объем раствора этиловым спиртом до  $1 \text{ дм}^3$ .

Натрия гидроокись по ГОСТ 4328—77, раствор молярной концентрации c (NaOH)=0,1 моль/дм<sup>3</sup> (0,1 н.), готовят по ГОСТ 25794.1—83.

Вода дистиллированная по ГОСТ 6709-72.

4.6.2. Проведение анализа

В стакан помещают пипеткой 50 см<sup>3</sup> раствора гидрохлорида гидроксиламина, перемешивают магнитной мешалкой и замеряют исходную величину рН.

Правильность показания рН-метра проверяют периодически по буферным растворам с известным рН.

Затем в стакан прибавляют 25 см<sup>3</sup> бугилового спирта, рН содержимого стакана при этом уменьшается. При постоянном перемешивании магнитной мешалкой в течение 20 мин содержимое стакана оттитровывают из бюретки раствором гидроокиси натрия до исходного рН, устойчивого в течение 1 мин.

4.6.1; 4.6.2. (Измененная редакция, Изм. № 1, 2, 3).

4.6.3. Обработка результатов

Массовую долю карбонильных соединений в пересчете на масляный альдегид ( $X_4$ ) в процентах вычисляют по формуле

$$X_4 = \frac{V \cdot 0,0072 \cdot 100}{25 \cdot \rho} ,$$

- где V объем раствора гидроокиси натрия концентрации точно 0,1 моль/дм<sup>3</sup>, израсходованный на титрование, см<sup>3</sup>;
- 0,0072 масса масляного альдегида, соответствующая 1 см<sup>3</sup> раствора гидроокиси натрия концентрации точно 0,1 моль/дм<sup>3</sup>, г;
  - $\rho$  плотность бутилового спирта, г/см<sup>3</sup>.

За результат анализа принимают среднее арифметическое двух параллельных определений, допускаемые расхождения между которыми не должны превышать 10 % относительно среднего результата определяемой величины при доверительной вероятности P=0,95.

(Измененная редакция, Изм. № 2).

- 4.7. Определение массовой доли нелетучего остатка
  - 4.7.1. Посуда и аппаратура

Чашка выпарительная по ГОСТ 9147-80.

Пипетка 2(2а)-2-100 по НТД.

Баня водяная.

Шкаф сушильный.

Весы лабораторные 2-го класса точности по ГОСТ 24104—88 с наибольшим пределом взвешивания 200 г.

Эксикатор по ГОСТ 25336-82.

4.7.2. Проведение анализа

100 см<sup>3</sup> бутилового спирта пипеткой помещают в сухую чистую выпарительную чашку, доведенную до постоянной массы и взвешенную (результат взвешивания в граммах записывают с точностью до четвертого десятичного знака), и выпаривают досуха на водяной бане в вытяжном шкафу.

Остаток сушат в сушильном шкафу при 100—105 °C до постоянной массы.

(Измененная редакция, Изм. № 3).

4.7.3. Обработка результатов

Массовую долю нелетучего остатка ( $X_5$ ) в процентах вычисляют по формуле

$$X_5 = \frac{(m - m_1) \cdot 100}{\rho \cdot 100} ,$$

где m — масса чашки с нелетучим остатком, г;

 $m_1$  — масса чашки, г;

 $\rho$  — плотность бутилового спирта, г/см<sup>3</sup>.

За результат анализа принимают среднее арифметическое двух параллельных определений, допускаемые расхождения между которыми не должны превышать  $10\,\%$  относительно среднего результата определяемой величины при доверительной вероятности  $P\!\!=\!\!0,95$ .

4.8. Для всех методов анализа допускается применение других средств измерения с метрологическими характеристиками, оборудования с техническими характеристиками не хуже и реактивов по качеству не ниже указанных в настоящем стандарте.

(Введен дополнительно, Изм. № 3).

#### 5. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 5.1. Бутиловый спирт упаковывают в бочки по ГОСТ 6247—79 тип I и ГОСТ 13950—91 тип I.
- 5.2. Бочки должны быть герметично укупорены и опломбированы металлической пломбой по ГОСТ 18677—73.
- 5.3. Бутиловый спирт транспортируют в железнодорожных цистернах с верхним и нижним сливом, автоцистернах.

Загрузочный люк цистерны закрывают крышкой с уплотнительной прокладкой и пломбируют металлической пломбой по ГОСТ 18677—73.

На цистерны наносится предупредительная надпись «Легковоспламеняющаяся жидкость».

5.4. Транспортная маркировка — по ГОСТ 14192—77 с указанием манипуляционного знака «Беречь от нагрева», а также знака опасности по ГОСТ 19433—88 (класс 3, подкласс 3.3, черт.3, классификационный шифр 3313) и серийного номера ООН 1120.

### (Измененная редакция, Изм. № 3).

- 5.5. Бочки с бутиловым спиртом транспортируют железнодорожным или автомобильным транспортом, в крытых транспортных средствах с соблюдением правил перевозок опасных грузов, действующих на каждом виде транспорта.
- 5.6. По согласованию с потребителем допускается транспортирование продукта пакетами в соответствии с требованиями ГОСТ 21650—76.

### (Измененная редакция, Изм. № 3).

5.7. Бутиловый спирт хранят в специально оборудованных металлических резервуарах или бочках в крытых складских помещениях, под навесом или на складской площадке с соблюдением действующих правил хранения огнеопасных веществ.

#### 6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

6.1. Изготовитель гарантирует соответствие бутилового спирта требованиям настоящего стандарта при соблюдении условий хранения и транспортирования.

(Измененная редакция, Изм. № 2, 3).

6.2. Гарантийный срок хранения — три года со дня изготовления. (Измененная редакция, Изм. № 2).

ПРИЛОЖЕНИЕ. (Исключено, Изм. № 2).

Редактор М.И. Максимова
Технический редактор В.Н. Прусакова
Корректор В.Е. Нестерова
Компьютерная верстка Е.Н. Мартемьянов ой-

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 19.12.96. Подписано в печать 06.01.97. Усл. печ. л. 1,16. Уч.-изд. л. 1,07. Тираж 316 экз. С33 Зак. 49

ИПК Издательство стандартов
107076, Москва, Колодезный пер., 14.
Набрано в Издательстве на ПЭВМ
Филиал ИПК Издательство стандартов — тип. "Московский печатник"
Москва, Лялин пер., 6.