

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ПРОМЫШЛЕННАЯ ЧИСТОТА

СЖАТЫЙ ВОЗДУХ

МЕТОДЫ ИЗМЕРЕНИЯ ЗАГРЯЗНЕННОСТИ

ГОСТ 24484-80 (СТ СЭВ 1705-79)

Издание официальное

РАЗРАБОТАН Министерством станкостроительной и инструментальной промышленности

ИСПОЛНИТЕЛИ

В. Н. Скрицкий, А. И. Кудрявцев, Н. Д. Шабалтас

ВНЕСЕН Министерством станкостроительной и инструментальной промышленности

Зам. министра А. Е. Прокопович

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 30 декабря 1980 г. № 6077

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Промышленная чистота СЖАТЫЙ ВОЗДУХ

ГОСТ 24484—80

Методы измерения загрязненности

Industries purity. Compressed air methods of measuring of contamination

(CT C3B 1705-79)

Постановлением Государственного комитета СССР по стандартам от 30 декабря 1980 г. № 6077 срок действия установлен

с 01.01 1981 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на сжатый воздух, предназначенный для питания пневматических устройств и систем, работающих при давлении до 2,5 МПа, и устанавливает методы определения его загрязненности на соответствие ГОСТ 17433—80. Стандарт полностью соответствует СТ СЭВ 1705—79.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Контроль загрязненности воздуха должен производиться после очистного устройства перед входом к потребителю на участке до внесения смазочного материала в сжатый воздух.

Отбор проб следует производить на прямых участках трубопровода. Контрольная точка должна отстоять от местного сопротивления на расстоянии не менее пяти диаметров трубопровода.

- 1.2. Контроль загрязненности сжатого воздуха должен производиться при работе пневматической системы или при условиях, близких к рабочим.
- 1.3. При определении расхода (объема) воздух должен быть приведен к следующим условиям: температура $293,15\,\mathrm{K}$ ($20^{\circ}\mathrm{C}$), давление $1013,25\,\Gamma\Pi a$ ($760\,\mathrm{mm}$ pt. ct.).
- 1.4. Погрешность измерения не должна превышать: $\pm 2\%$ давления и массы; $\pm 5\%$ расхода; ± 0.5 °C температуры.

- 1.5. Сроки проверки качества сжатого воздуха приведены в рекомендуемом приложении 1.
- 1.6. Приборы и оборудование приведены в рекомендуемом приложении 2.

2. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ТВЕРДЫХ ЧАСТИЦ

- 2.1. Содержание твердых частиц для классов загрязненности сжатого воздуха от 1 до 14 должно определяться одним из двух методов: весовым методом или при помощи аэрозольного счетчика.
- 2.2. Содержание твердых частиц для 0-го класса загрязненности сжатого воздуха должно определяться при помощи аэрозольного счетчика.
- 2.3. Содержание твердых частиц в сжатом воздухе $C_{\mathtt{T}}$ в мг/м³ должно определяться по результатам не менее трех измерений по формуле (1)

$$C_{\tau} = \frac{C_{\tau_1} \tau_1 + C_{\tau_2} \tau_2 + \dots + C_{\tau_n} \tau_n}{\tau_1 + \tau_2 + \dots + \tau_n},$$
 (1)

где C_{τ_1} , C_{τ_2} , ... C_{τ_n} — содержание твердых частиц сжатого воздуха, мг/м³;

 τ_1 , τ_2 , . . . , τ_n — время отбора проб воздуха, мин.

2.4. Ориентировочную продолжительность измерения т необходимо вычислять по формуле (2)

$$\frac{b_{\min}}{C_{\tau_{\underline{n}}}Q} \leqslant \tau \leqslant \frac{b_{\max}}{C_{\tau_{\underline{n}}}Q},\tag{2}$$

где b_{\min} — минимально необходимое содержание твердых частиц на фильтре, мг;

 b_{\max} — максимально допустимое содержание твердых частиц на фильтре, мг;

 C_{τ_A} — предполагаемое или предельно допустимое содержание твердых частиц, мг/м 8 ;

Q — расход воздуха через контрольный аналитический фильтр, м 3 /мин.

Минимальное содержание твердых частиц на фильтре должно быть не менее 1 мг.

Максимальное содержание твердых частиц должно быть 5 мг на $1~{\rm cm^2}$ поверхности контрольных фильтров.

- 2.5. Весовой метод измерения содержания твердых частиц
- 2.5.1. Весовой метод измерения содержания твердых частиц осуществляют путем пропускания определенных количеств воз-

духа через контрольный аналитический фильтр и взвешивания фильтра до и после отбора пробы воздуха.

Аналитический фильтр должен обеспечивать очистку сжатого воздуха до размера частиц соответственно 0-му классу по ГОСТ 17433--72.

2.5.2. Содержание твердых частиц в пробе воздуха $C_{\rm тл}$ в мг/м³ должно вычисляться по формуле (3).

$$C_{\tau_{\Pi}} = \frac{m_2 - m_1}{Q \tau_n},\tag{3}$$

где m_1 — масса фильтра до отбора пробы воздуха, мг;

 m_2 — масса фильтра после отбора пробы воздуха, мг.

2.5.3. Из контрольного аналитического фильтра до и после

отбора пробы должны быть удалены влага и масло.

2.5.4. При определении содержания твердых частиц для четных классов загрязненности сжатого воздуха необходимо находящуюся в воздухе в жидком состоянии влагу устранить путем повышения температуры воздуха, редуцированием или другим способом.

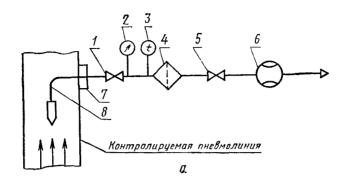
2.5.5. Измерение содержания твердых частиц для пневмолиний внутренним диаметром <32 мм должно производиться путем пропускания через контрольный аналитический фильтр всего потока воздуха, для пневмолиний внутренним диаметром>32 мм путем изокинетического отбора проб воздуха.

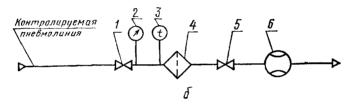
Схемы установок для измерения содержания твердых частиц

весовым методом должны соответствовать черт. 1.

Внутренний диаметр заборной трубки должен быть не менее

2.5.6. При изокинетическом отборе проб скорость сжатого воздуха в заборной трубке должна быть не менее 15 м/с, а расход воздуха через контрольный аналитический фильтр Q в м 3 /мин должен быть определен по формуле


$$Q=1,33\cdot 10^{-1}\frac{d^2 v_{3.T} p_{3.T}}{T_{3.T}},$$
 (4)


где d — внутренний диаметр заборной трубки, мм;

 $v_{3.T}$ — скорость воздуха в заборной трубке, м/с:

 $p_{3.T}$ — абсолютное давление в заборной трубке, определенное по манометру 2 (см. черт. 1а), МПа. $T_{3.T}$ — температура воздуха в заборной трубке, К.

2.6. Измерение содержания твердых частиц с помощью аэрозольного счетчика производят путем пропускания проб воздуха через счетчик и определения числа и размеров твердых частиц.

а—изокинетический отбор пробы воздуха; б—пропускание через контрольный фильтр всего потока воздуха; І—кран; 2—манометр; 3—фильтр; 4—кран; 3—расходомер; 6—термометр; 7—штуцер лтя ввода заборной трубки; 8—заборная трубка с наконечником

Черт. 1

Концентрацию твердых частиц $C_{\tau_{\Pi}}$ в мг/м³ определяют по формуле

$$C_{\tau_{\Pi}} = 5,23 \cdot 10^{-10} \rho \frac{z_1 d_1^3 + z_2 d_2^3 + \dots + z_{\Pi} d_{\Pi}^3}{V_{\Pi}},$$
 (5)

где ϱ — плотность твердых частиц, г/см³ (при неизвестной величине плотности необходимо принять ϱ = 2,5 г/см³);

d — максимальный размер частицы, мкм;

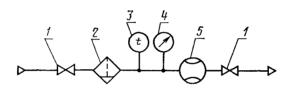
z — число частиц определенного размера;

 V_{π} — объем пробы воздуха, м 3 .

3. ИЗМЕРЕНИЕ МАКСИМАЛЬНОГО РАЗМЕРА ТВЕРДЫХ ЧАСТИЦ

- 3.1. Максимальный размер частиц должен измеряться путем пропускания воздуха через аэрозольный счетчик или контрольный аналитический фильтр.
- 3.2. После пропускания воздуха контрольный аналитический фильтр должен быть просветлен и высушен.

Просветление производят раствором, состоящим из 94% ксилола $C_6H_4(CH_3)_2$ и 6% трикрезилортофосфата $(CH_3C_6H_4O)_3PO$ или дибутилфталата $C_6H_4[COO(CH_2)_3CH_3]_2$.


Размеры твердых частиц определяют путем исследования час-

тиц под микроскопом.

3.3. Отбор проб и обработка контрольного аналитического фильтра до и после отбора пробы должна производиться в соответствии с требованиями пп. 1.1, 2.3, 2.5.3—2.5.6.

4. ИЗМЕРЕНИЕ СОДЕРЖАНИЯ ВОДЫ И МАСЕЛ В ЖИДКОМ СОСТОЯНИИ

4.1. Содержание воды и масел в жидком состоянии определяют весовым методом путем пропускания всего потока воздуха через тарированный фильтр-влагоотделитель по схеме в соответствии с черт. 2.

1—кран; 2—тарированный фильтр-влагоотделитель; 3—термометр; 4—манометр; 5—расходомер

Черт. 2

- 4.2. Перед определением содержания воды и масла в жидком состоянии необходимо убедиться в их наличии, для чего струю воздуха непосредственно из трубопровода направляют на лист чистой фильтровальной бумаги. Расстояние от конца трубки до листа бумаги устанавливают от 50 до 100 мм в зависимости от давления сжатого воздуха. Появление на бумаге в течение 5 мин пятен свидетельствует о наличии воды и масла в жидком состоянии.
- 4.3. Расход воздуха через тарированный фильтр-влагоотделитель должен соответствовать номинальному режиму пневматической системы и расходной характеристике тарированного фильтравлагоотделителя.
- 4.4. Испытание должно продолжаться до появления в резервуаре фильтра-влагоотделителя 0,1-0,2 дм 3 смеси воды и масла, после чего производят их разделение и взвешивание.
- 4.5. Содержание воды в жидком состоянии $C_{\rm B}$ в мг/м³ определяют по формуле

$$C_{\rm B} = \frac{m_{\rm B}}{\eta_{\rm B} V_{\rm B}},\tag{6}$$

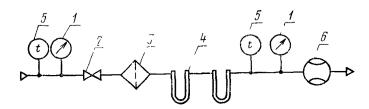
где $m_{\rm B}$ — масса воды, мг;

η_в — эффективность тарированного влагоотделителя для воды:

 $V_{\rm m}$ — объем пробы воздуха, м³.

4.6. Содержание масел в жидком состоянии $C_{\rm M}$ в мг/м³ определяют по формуле

$$C_{\rm M} = \frac{m_{\rm M}}{\eta_{\rm M} V_{\rm II}},\tag{7}$$


где $m_{\rm M}$ — масса масла, мг;

 η_{M} — эффективность тарированного влагоотделителя для масла

5. ИЗМЕРЕНИЕ СОДЕРЖАНИЯ ВОДЯНЫХ ПАРОВ

- 5.1. Содержание водяных паров (температуру точки росы) следует определять при помощи приборов для измерения влажности или весовым метолом.
- 5.2. Содержание водяных паров (температуру точки росы) весовым методом должно определяться путем пропускания пробы воздуха через U-образные трубки, снаряженные силикагелем-индикатором, с расходом 0,025 дм³/с в течение 2 ч. Изменение цвета силикагеля в последней U-образной трубке не допускается.

Схема установки должна соответствовать черт. 3.

1-манометр; 2-кран; 3-фильтр, обеспечивающий очистку воздуха до размеров частиц, соответствующих классу 0 по ГОСТ 17433-80; 4-трубки, снаряженные силикагелем-индикатором; 5-термометр; 6-расходомер

Черт. 3

5.3. Содержание водяных паров $C_{\text{в.u}}$ в мг/кг определяют по формуле

$$C_{\mathrm{B. n}} = \frac{m_1 - m_2}{m},$$

где m_1 — общая масса снаряженных индикаторных трубок после испытаний, мг;

та — общая масса снаряженных индикаторных трубок до испытаний, мг;

т — масса пробы воздуха после осушки, кг.

$$m = 3420 V \frac{p}{T}$$
,

где V — объем пробы воздуха при давлении p и температуре T, $м^3$; p — абсолютное давление воздуха возле расходомера, $M\Pi a$;

T — абсолютная температура воздуха возле расходомера, К.

5.4. Температуру точки росы в зависимости от температуры и относительной влажности сжатого воздуха $T_{\rm p}$ в К определяют по формуле

$$T_{p} = \frac{(1+0.1471 \lg \varphi^{-1})^{-2}(1.87-529.4) + [(2169+319\lg \varphi^{-1})^{-1} \cdot 10^{8}-391] - 32}{1.8} + 273,$$
(9)

где T — температура сжатого воздуха, K;

ф — относительная влажность воздуха в долях единицы

$$\varphi = \frac{C_{\text{B.II}}}{622 \cdot 10^3 + C_{\text{B.II}}} \cdot \frac{p_{\text{c}}}{p_{\text{H}}},$$

где $p_{\rm H}$ — парциальное давление насыщенного водяного пара, МПа, определяемое по таблицам свойств насыщенного водяного пара в зависимости от температуры;

рс — абсолютное давление воздуха в системе, МПа.

Температура точки росы в зависимости от содержания водяных паров для ряда давлений приведена в справочном приложении 3.

6. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ГАЗООБРАЗНЫХ КИСЛОТ И ШЕЛОЧЕЙ

6.1. Содержание газообразных кислот и щелочей должно определяться путем пропускания воздуха через соответствующие растворы: для кислот—смесь дистиллированной воды и фенолфталеина, для щелочей—смесь дистиллированной воды и фенолфталеина и сравнения с контрольной пробой.

6.2. Для приготовления раствора необходимо в 100 см³ дистиллированной воды добавить 2—3 капли индикатора. Из этого количества раствора необходимо отобрать 10 см³ контрольной пробы.

6.3. Через остальной раствор необходимо пропускать 0,0063 дм³/с исследуемого воздуха в течение 5 мин, затем отобрать 10 см³ раствора и сравнить с контрольной пробой.

Отсутствие заметной разницы в окрашивании сравниваемых растворов свидетельствует об отсутствии или допустимом содержании кислот и щелочей.

ПРИЛОЖЕНИЕ 1 Рекомендуемое

СРОКИ ПРОВЕРКИ КАЧЕСТВА СЖАТОГО ВОЗДУХА

Проверку степени загрязненности сжатого воздуха рекомендуется проводить:

1 раз в 3 мес — для класса 0;

1 раз в 6 мес — для классов 1—7, 9, 11 и 13;

1 раз в год — для классов 8, 10, 12 и 14.

ПРИЛОЖЕНИЕ 2 Рекомендуемое

ПЕРЕЧЕНЬ ПРИВОРОВ И ОБОРУДОВАНИЯ, ПРИМЕНЯЕМЫХ ДЛЯ ПРОВЕРКИ ЗАГРЯЗНЕННОСТИ СЖАТОГО ВОЗДУХА

Показывающий манометр класса точности 1,5. Стеклянный термометр на пределы измерения от 213 до 323 К.

Ротаметры по ГОСТ 13045-67.

Аналитические фильтры АФА для весового и цисперсного анализа.

Образцовые весы 1-го разряда повышенной точности по ГОСТ 24104—80.

Фильтры-влагоотделители по ГОСТ 17437—72. Фильтр ФВ6 по ГОСТ 14266—69.

Фотоэлектрический счетчик с чувствительностью измерения от 0,25 до 10 мкм.

Кулонометрический измеритель влажности «Байкал» класса точности не ниже 10 по ГОСТ 17142—78.

Микроскоп с увеличением не менее 200×.

Температура точки росы, К (°C)	Предельное содержание водяных паров, мг/кг, при избыточном давлении воздуха, МПа											
	0	0,14	0,25	0,4	0,5	0,6	0,8	1,0	1,2	1,6	2,0	2,5
213(-60) 214(-59) 215(-58) 216(-57) 217(-56) 218(-55) 219(-54) 220(-53) 221(-52) 222(-51) 223(-50) 224(-49) 225(-48) 226(-47) 227(-46) 228(-45) 229(-44) 230(-43) 231(-42) 232(-41) 233(-40) 234(-39) 235(-38)	11,2 12,8 14,2 16,5 18,4 20,9 23,2 25,6 28,1 31,4 36,9 42,9 49,3 55,3 61,3 67,4 74,1 86,1 92,1 104,2 110,8 122,9 135,5	4,8 5,5 6,1 7,1 7,9 9,0 10,0 11,1 12,1 13,5 15,9 18,5 21,2 23,8 26,4 29,1 31,9 37,1 39,7 44,9 47,9 52,9 58,4	3,3 3,7 4,2 4,9 5,4 6,9 7,7 8,2 10,8 12,7 14,5 16,3 18,1 19,9 21,9 25,4 27,2 30,8 32,7 36,3 40,0	2,3 2,6 2,9 3,8 4,3 4,8 5,8 6,5 7,6 8,9 10,1 11,7 13,9 15,3 17,8 19,0 21,5 22,9 25,4 28,0	1,9 2,2 2,4 2,8 3,6 4,0 4,4 4,9 5,4 6,4 7,4 8,5 10,6 11,6 12,8 14,8 15,9 18,0 19,1 21,2 23,4	1,6 1,9 2,1 2,5 2,7 3,5 3,8 4,6 5,4 7,3 8,1 10,0 11,3 13,8 15,5 16,3 20,2	1,3 1,5 1,6 1,9 2,1 2,7 3,0 3,3 3,6 4,3 5,7 6,4 7,1 7,3 8,6 10,7 12,8 14,2 15,7	1,0 1,2 1,3 1,5 1,7 1,9 2,2 2,4 2,6 2,9 3,4 4,5 5,7 6,8 7,9 8,6 10,2 11,3 12,4	0,9 1,0 1,3 1,5 1,6 1,9 2,2 2,4 2,4,8 3,8 4,8 5,7 7,2 1,6 9,5	0,7 0,8 0,9 1,0 1,1 1,2 1,4 1,5 1,7 1,9 2,6 2,9 3,3 4,4 4,4 5,5 6,6 7,3 8,0	0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,4 1,5 1,8 1,2,4 2,7 3,3 4,1 4,4 5,3 5,9 6,5	0,4 0,5 0,6 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,4 1,7 1,9 2,1 2,6 2,9 3,6 4,1 4,8 5,3
236 (—37) 237 (—36) 238 (—35)	153,6 166,2 184,3	66,1 71,6 79,4	45,4 49,1 54,4	31,7 34,3 38,1	26,5 28,7 31,8	22,8 24,7 27,4	17,8 19,2 21,3	14,1 15,3 17,5	12,0 13,0 14,8	9,1 9,9 11.3	7,4 8,0 9,2	6,0 6,5 7.4

	Предельное содержание водяных наров, мі/кі, при набыточном давлении воздуха. МПа											
Температура точки росы, К (°С)	0	0,14	0,25	0,4	0,5	0,6	0,8	1,0	1,2	1,6	2,0	2,5
239 (-34) 240 (-33) 241 (-32) 242 (-31) 243 (-30) 244 (-29) 245 (-28) 246 (-27) 247 (-26) 248 (-25) 249 (-24) 250 (-23) 251 (-22) 252 (-21) 253 (-20) 254 (-19) 255 (-18) 256 (-17) 257 (-16) 258 (-15) 259 (-14) 260 (-13) 261 (-12) 262 (-11) 263 (-10) 264 (-9) 265 (-8) 266 (-7) 267 (-6) 268 (-5) 269 (-4)	202,9 227,7 243,9 276,5 301 342 368 430 461 491 553 614 681 741 801 862 922 989 1049 1170 1230 1357 1478 1653 1725 1907 2071 2225 2397 2607 2794	87,4 98,0 105,8 119,7 142,9 158,8 185,2 198,6 211,7 238,1 264,5 293,1 319,0 345,0 370,9 396,8 425,4 451,3 508,2 529,1 583,6 633,5 689,7 741,8 820,0 956,0 1030,0 1120,0	59,9 67,2 72,6 81,6 83,9 98,0 108,9 127,0 136,3 145,2 163,3 181,4 201,0 218,8 236,6 254,4 272,2 291,7 309,5 345,1 362,9 400,2 437,4 473,2 503,8 560,0 609,0 655,0 701,0 825,0	41,9 47,0 50,8 57,1 62,2 68,5 76,1 88,8 95,3 101,5 114,2 126,9 140,6 153,0 165,5 177,9 190,3 204,0 216,5 241,3 253,8 279,9 304,8 330,8 330,8 335,8 339,0 425,0 460,0 536,0 576,0	35,0 39,3 42,4 47,7 51,9 57,2 63,6 74,2 79,6 84,8 95,4 105,9 117,4 127,3 138,5 158,9 170,4 180,6 2011,9 233,7 254,5 276,1 327,0 355,0 3414,0 446,0 446,0	30,2 33,8 36,5 41,1 44,8 49,3 54,8 64,0 69,6 73,1 82,2 91,4 101,2 119,1 128,1 137,0 146,9 155,8 173,8 173,8 182,7 201,5 219,4 238,2 256,2 280,0 302,0 383,0 412,0	23,5 26,3 28,4 32,0 34,8 38,4 42,5 49,7 53,4 56,8 64,0 71,0 78,7 99,6 106,6 114,2 121,2 135,2 142,1 156,7 170,7 185,3 199,0 236,0 255,0 275,0 298,0 320,0	19,2 20,9 22,6 25,4 30,0 36,1 39,2 43,0 47,0 51,5 56,1 61,6 67,9 73,5 79,7 87,7 94,4 110,8 121,0 130,6 141,4 153,8 162,3 179,9 194,0 226,3 243,8 243,0	16,3 17,7 19,1 21,5 25,3 28,0 30,6 33,2 36,4 43,5 52,2 67,5 74,2 80,0 86,8 102,4 110,5 119,6 130,2 140,7 152,2 164,2 177,0 191,6 206,3 202,6	12,4 13,5 14,6 16,5 19,4 21,4 25,4 30,4 33,3 36,3 40,9 47,6 51,6 56,7 61,1 66,2 71,7 78,3 84,5 91,5 107,6 116,4 125,5 136,0 146,4 157,8 170,2	10,0 10,9 11,8 13,3 15,7 17,3 18,9 20,5 22,5 22,6 27,0 29,4 32,3 35,5 38,5 41,8 45,9 49,5 53,6 68,4 74,0 80,6 87,1 94,2 101,6 110,0 118,5 127,7 137,8	8,1 8,9 9,6 10,7 12,7 14,0 15,3 16,6 18,2 21,8 21,8 23,7 26,1,1 33,7 37,1 40,0 43,9 51,2 55,3 59,8 65,1 76,0 82,0 89,0 95,7 103,7

]	Предел	выое соде	ржание в	одяных п	аров, мг/і	кг, при из	быточном	давлени	воздуха	, МПа	
Температура точки росы, К (°C)	0	0,14	0,25	0,4	0,5	0,6	0,8	1,0	1,2	1,6	2,0	2,5
270(—3) 271(—2) 272(—1) 273(—0) 274K(1°C)	3016 3238 3472 3683 4056	1295,0 1390,0 1490,0 1580,0 1750,0	890,0 960,0 1030,0 1080,0 1185,0	625,0 671,0 710,0 761,0 839,0	520,0 559,0 592,0 635,0 696,0	444,0 479,0 506,0 544,0 595,0	346,0 373,0 399,0 422,0 463,0	282,9 304,4 328,1 352,0 379,0	239,3 257,5 277,3 298,0 320,0	183,0 197,0 212,3 228,0 245,0	148,1 159,4 171,6 184,0 198,0	119,6 128,7 138,8 149,0
275(2)	4364	1879,0	1283,0	899,0	750,0	640,0	497,0	407,0	344,0	463,0	213,0	172,0
276(3)	4685	2010,0	1380,0	965,0	805,0	687,0	534,0	437,0	370,0	283,0	229,0	185,0
277(4)	5031	2160,0	1470,0	1030,0	861,0	723,0	562,0	469,0	397,0	303,0	246,0	198,0
278(5)	5399	2320,0	1590,0	1110,0	925,0	791,0	615,0	503,0	426,0	325,0	263,0	213,0
279(6)	5791	2482,0	1700,0	1190,0	990,0	847,0	659,0	539,0	456,0	349,0	282,0	228,0
280(7)	6209	2600,0	1820,0	1270,0	1060,0	910,0	707,0	578,0	489,0	374,0	302,0	244,0
281(8)	6652	2840,0	1950,0	1360,0	1130,0	974,0	757,0	622,0	523,0	400,0	324,0	262,0
282(9)	7125	3040,0	2065,0	1445,0	1205,0	1040,0	811,0	660,0	560,0	428,0	347,0	280,0
283(10)	7626	3260,0	2230,0	1562,0	1299,0	1115,0	877,0	708,0	599,0	458,0	371,0	299,0
284(11)	8159	3495,0	2390,0	1670,0	1390,0	1190,0	926,0	757,0	641,0	490,0	396,0	320,0
285(12)	8725	3715,0	2530,0	1785,0	1485,0	1232,0	990,0	809,0	685,0	523,0	424,0	342,0
286(13)	9326	3920,0	2720,0	1908,0	1585,0	1355,0	1055,0	864,0	731,0	559,0	452,0	365,0
287(14)	9965	4250	2900	2030	1690	1452	1129	922	780	597	483	390
288(15)	10641	4540	3100	2162	1808	1549	1203	984	833	636	515	416
289(16)	11359	4820	3310	2310	1920	1658	128 5	1050	888	679	549	444
290(17)	12120	5140	3520	2460	2040	1762	1369	1120	946	723	585	473
291(18)	12925	5460	3750	2613	2180	1875	145 7	1190	1000	770	624	504
292(19)	13780	5840	4000	2800	2322	2000	1555	1270	1070	820	664	536
293 (20)	14687	6200	4250	2980	2478	2130	1655	1350	1140	873	707	571
294 (21)	15641	6500	4550	3170	2630	2260	1758	1440	1220	929	752	607
295 (22)	16655	7180	4815	3380	2790	2400	1869	1530	1290	988	799	645
296 (23)	17730	7500	5100	3580	2980	2560	1987	1620	1370	1050	849	686
297 (24)	18866	7960	5450	3820	3160	2720	2110	1720	1460	1110	902	728
298 (25)	20070	8360	5800	4050	3350	2880	2239	1830	1550	1180	958	773
299 (26)	21336	8920	6140	4280	3558	3060	2390	1940	1640	1260	1020	821
300 (27)	22679	9560	6520	4550	3770	3240	2520	2060	1740	1330	1080	871

											11 pooon	жение
TD		Предел	ьное соде	ржание і	п хынкдов	аров, мг/	кг, при из	збыточном	давлени	и воздуха	, МПа	
Температура точки росы, К (°С)	0	0,14	0,25	0,4	0,5	0,6	0,8	1,0	1,2	1,6	2,0	2,5
301 (28) 302 (29) 303 (30) 304 (31) 305 (32) 306 (33) 307 (34) 308 (35) 309 (36) 310 (37) 311 (38) 312 (39) 313 (40) 314 (41)	24098 25596 27242 28856 30622 32490 34462 36548 38742 41067 43519 46107 48835 51719	10180 10550 11400 12180 12800 13520 14310 15220 16100 17040 18150 19150 20200 21350	6900 7350 7780 8260 8720 9280 9820 10360 10950 11600 12290 13600 14350	4900 5110 5420 5770 6100 6450 7200 7660 8040 8560 9020 9510 10040	4000 4240 4500 4760 5030 5325 5600 5920 6280 6640 7010 7400 7910 8320	3440 3650 3870 4100 4330 4600 4860 5140 5450 5740 6080 6400 6760 7100	2690 2840 3000 3180 3360 3540 3760 3980 4200 4360 4690 4960 5220 5530	2190 2320 2460 2600 2750 2910 3080 3260 3440 3640 3840 4050 4280 4520	1850 1960 2080 2200 2330 2460 2610 2760 2910 3080 3250 3430 3620 3820	1410 1500 1590 1680 1780 1880 1990 2100 2220 2350 2480 2620 2760 2920	1140 1210 1284 1360 1440 1520 1610 1700 1800 1900 2000 2120 2230 2360	923 978 1040 1100 1160 1230 1370 1450 1530 1620 1710 1800 1900
315(42) 316(43) 317(44) 318(45)	54770 57986 61385 64980	22450 23720 25100 26400	15130 15950 16800 17700	10600 11120 11715 12400	8790 9350 9750 10550	7540 8060 8290 8740	5840 6249 6437 6760	4760 5020 5290 5570	4030 4240 4470 4710	3070 3240 3410 3600	2480 2620 2760 2910	2010 2110 2230 2350
319(46) 320(47) 321(48) 322(49) 323(50)	68769 72780 77020 81498 86236	27600 29200 30600 32370 34000	18680 19650 20370 21700 22700	12900 13680 14400 15140 15800	10800 11320 12000 12500 13210	9230 9740 10030 10080 11030	7150 7550 7960 8360 8800	5870 6180 6500 6840 7190	4960 5220 5490 5780 6080	3790 3980 4190 4410 4640	3060 3220 3900 3560 3750	2470 2600 2730 2880 3020

Изменение № 1 ГОСТ 24484—80 Промышленная чистота, Сжатый воздух. Методы измерения загрязненности

Пункт 26 Экспликация к формуле Исключить слово «максимальный». (Продолжение см с. 328)

(Продолжение изменения к ГОСТ 24484-80)

Пункт 6.1. Заменить слова: «для кислот — смесь дистиллированной воды и фенолфталеина» на «для кислот — смесь дистиллированной воды и метилового красного».

Приложение 2. Заменить ссылки: ГОСТ 13045—67 на ГОСТ 13045—81, ГОСТ 17437—72 на ГОСТ 17437—81, ГОСТ 14266—69 на ГОСТ 14266—82,

(ИУС № 3 1986 г)

Редактор Е. И. Глазкова Технический редактор О. Н. Никитина Корректор М. С. Кабашова