# МУКА ДРЕВЕСНАЯ

## МЕТОДЫ ИСПЫТАНИЙ

Издание официальное

# межгосударственный

СТАНДАРТ

### МУКА ДРЕВЕСНАЯ

#### Методы испытаний

ГОСТ 16362—86

Wood flour. Test methods

ОКСТУ 5386

Дата введения <u>01.01.88</u>

### 1. МЕТОД ОТБОРА ПРОБ

1.1. Из каждого мешка или контейнера, отобранного по ГОСТ 16361, разд. 2, совком или щупом отбирают точечные пробы массой не менее 500 г. Объединенную пробу тщательно перемешивают и сокращают методом квартования до пробы массой не менее 1 кг.

(Измененная редакция, Изм. № 1).

### 2. ОПРЕДЕЛЕНИЕ ВЛАЖНОСТИ

### 2.1. Аппаратура

Прибор для ускоренного определения влажности модели 062M (062), с термоизлучающей лампой мощностью 500 Вт.

Стаканчики для взвешивания по ГОСТ 25336 или алюминиевые тех же размеров.

Эксикатор по ГОСТ 25336

Весы лабораторные 2-го класса точности с наибольшим пределом взвешивания 200 г, с ценой деления не более 0,0001 г.

2.2. Подготовка к испытанию

Прибор включают в сеть через трансформатор на напряжение 150 В. Растояние от лампы до столика прибора должно быть 50 мм.

Открытые стаканчики с крышками сушат 5 мин в приборе, 15—20 мин охлаждают в эксикаторе над безводным хлористым кальцием или силикагелем и взвешивают. Результат взвешивания в граммах записывают с точностью до третьего десятичного знака.

2.3. Проведение испытания

Около 1 г древесной муки взвешивают с той же точностью в стаканчике. Открытый стаканчик с крышкой помещают на 5 мин в прибор, затем закрывают крышкой, 15—20 мин охлаждают в эксикаторе над безводным хлористым кальцием или силикагелем и взвешивают с той же точностью.

Допускается высушивание навески в сушильных электрических шкафах (масса навески около  $5,000~\mathrm{r}$ ) или приборах ДИ-8, ВЛВ- $100~\mathrm{r}$  (масса навески около  $15,000~\mathrm{r}$ ) при температуре ( $103\pm2$ ) °C до постоянной массы.

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1986 © ИПК Издательство стандартов, 1999 Переиздание с Изменениями

## 2.4. Обработка результатов

Влажность древесной муки (X) в процентах вычисляют по формуле

$$X = \frac{(m_1 - m_2)100}{m_2 - m},$$

где m — масса стаканчика, г;

т, — масса стаканчика с навеской до сушки, г;

 $m_2$  — масса стаканчика с навеской после сушки, г.

За результат принимают среднее арифметическое двух определений, абсолютное допускаемое расхождение между которыми не должно превышать 0.5%. Результат округляют до первого десятичного знака.

## 3. ОПРЕДЕЛЕНИЕ МАССОВОЙ ДОЛИ ЗОЛЫ

### 3.1. Аппаратура

Печь электрическая, обеспечивающая температуру нагрева 600—900°C. Тигель фарфоровый по ГОСТ 9147.

Плитка электрическая с закрытой спиралью.

Эксикатор по ГОСТ 25336.

Весы лабораторные 2-го класса точности с наибольшим пределом взвешивания 200 г, с ценой деления не более 0.0001 г.

## 3.2. Подготовка к испытанию

Тигель с крышкой прокаливают в печи при температуре 600—900 °С до постоянной массы, охлаждают в эксикаторе над безводным хлористым кальцием или силикагелем и взвешивают. Результат взвешивания в граммах записывают с точностью до третьего десятичного знака.

Определяют влажность древесной муки по разд. 2.

### 3.3. Проведение испытания

Около 5 г древесной муки засыпают в тигель, взвешивают с той же точностью и сжигают на электрической плитке до прекращения выделения газов.

Тигель с золой прокаливают 3—4 ч с неплотно закрытой крышкой в печи при температуре 600—900 °C, закрывают крышкой, охлаждают в эксикаторе над безводным хлористым кальцием или силикагелем и взвешивают. Результат взвешивания в граммых записывают с точностью до третьего десятичного знака. Затем тигель с золой снова прокаливают 1 ч с повторением всех последующих операций. Прокаливание прекращают, когда расхождение между двумя последовательными взвешиваниями не будет превышать 0,002 г.

### 3.4. Обработка результатов

Массовую долю золы в древесной муке  $(X_1)$  в процентах вычисляют по формуле

$$X_1 = \frac{m_2 - m_1}{m_1 - m} (100 + X) ,$$

где m — масса тигля, г;

 $m_1$  — масса тигля с навеской муки, г;

 $m_2$  — масса тигля с золой, г.

X — влажность муки, %.

За результат принимают среднее арифметическое двух определений, абсолютное допускаемое расхождение между которыми не должно превышать 0,1 %. Результат округляют до второго десятичного знака.

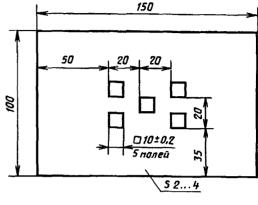
# 4. ОПРЕДЕЛЕНИЕ МАССОВОЙ ДОЛИ ОКРАШЕННЫХ ПРИМЕСЕЙ

### 4.1. Аппаратура

Пластинка стеклянная с нанесенными полями (черт. 1).

Весы лабораторные 2-го класса точности с наибольшим пределом взвешивания  $200~\rm f$ , с ценой деления не более  $0{,}0001~\rm f$ .

Сита с сетками 063 и 025 по ГОСТ 6613.


Лупа с 2-х кратным увеличением.

## (Измененная редакция, Изм. № 1).

4.2. Проведение испытания

4.2.1. Около 10 г древесной муки марок 120, 140, 160, 180, 200, Т и 250 рассыпают ровным слоем размером около  $70\times100$  мм на ровной горизонтальной поверхности и стеклянной пластинкой прижимают к поверхности. Слой муки должен плотно без вмятин прилегать к пластинке.

Окрашенные частицы (отличающиеся по цвету от здоровой древесины), расположенные в квадратных полях, пересчитывают, пользуясь лупой.



Черт. 1

Навеску муки перемешивают и подсчет повторяют.

### (Измененная редакция, Изм. № 1).

- 4.2.2. Около 1 г остатка муки марки 560, сортированной на сите с сеткой 025, и марки 1250, сортированной на сите с сеткой 063, рассыпают на листе белой бумаги. Из навески пинцетом отбирают окрашенные частицы и взвешивают. Результат взвешивания в граммах записывают с точностью до третьего десятичного знака.
  - 4.3. Обработка результатов
- 4.3.1. Массовую долю окрашенных примесей ( $X_2$ ) для муки марок 120, 140, 160, 180, 200, Т и 250 в процентах вычисляют по формуле

$$X_2 = \frac{n}{10 \ K} ,$$

где n — общее количество окрашенных частиц (на 10 полях);

K — коэффициент перевода, равный для марок:

120, 140-16;

160, 180, T-12;

200, 250-8.

За результат принимают среднее арифметическое двух определений, округленное до целого числа.

### (Измененная редакция, Изм. № 1).

4.3.2. Массовую долю окрашенных примесей ( $X_3$ ) для муки марок 560 и 1250 в процентах вычисляют по формуле

$$X_3 = \frac{m_1}{m} 100$$
,

где m — масса навески, г;

 $m_1$  — масса окрашенных частиц, г.

За результат принимают среднее арифметическое двух определений, округленное до первого десятичного знака.

## 5. ОПРЕДЕЛЕНИЕ МАССОВОЙ ДОЛИ МЕТАЛЛОМАГНИТНЫХ ПРИМЕСЕЙ

## 5.1. Аппаратура

Магнит постоянный, обладающий магнитной индукцией не менее 120 мТл или удерживающий плоскую стальную пластину толщиной 30—40 мм массой не менее 5 кг.

Стаканчики для взвешивания по ГОСТ 25336.

Бумага папиросная.

Весы лабораторные 2-го класса точности с наибольшим пределом взвешивания 200 г, с ценой деления не более 0,0001 г.

5.2. Проведение испытания

Около 200 г древесной муки рассыпают ровным слоем (толщиной не более 10 мм) на листе бумаги или стекла. Магнитом медленно проводят бороздки вдоль и поперек слоя муки так, чтобы вся мука была захвачена полюсами магнита. Полюса магнита должны быть плотно обернуты папиросной бумагой. Стаканчик взвешивают. Результат взвешивания в граммах записывается с точностью до четвертого десятичного знака.

Притянутые магнитом металлические частицы осторожно переносят в стаканчик и взвешивают с той же точностью.

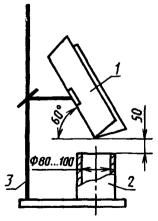
5.3. Обработка результатов

Массовую долю металломагнитных примесей  $(X_i)$  в процентах вычисляют по формуле

$$X_4 = \frac{m_1 - m}{200} 100 ,$$

где m — масса стаканчика, г;

 $m_1$  — масса стаканчика с металлическими частицами, г;


200 — масса навески муки, г.

За результат принимают среднее арифметическое двух определений, округленное до четвертого десятичного знака.

## 6. ОПРЕДЕЛЕНИЕ НАСЫПНОЙ ПЛОТНОСТИ

## 6.1 Аппаратура

Приспособление для испытания (черт. 2).



1- желоб из оцинкованной стали; 2- измерительный сосуд вместимостью (1000 $\pm$ 2) см $^3$ ; 3- штатив

Черт. 2

Весы лабораторные не ниже 4-го класса точности с наибольшим пределом взвешивания не более 1000 г с ценой деления не более 0,01 г.

6.2. Проведение испытания

Древесную муку засыпают в сосуд по желобу. Во время испытаний сосуд не должен подвергаться толчкам и ударам. Излишки муки снимают линейкой. Содержимое сосуда взвешивают. Результат взвешивания в граммах записывают с точностью до первого десятичного знака.

6.3. Обработка результатов

Насыпную плотность древесной муки ( $X_5$ ) в кг/м<sup>3</sup> вычисляют по формуле

$$X_5 = \frac{m1000}{V},$$

где m — масса муки в сосуде, г;

V — вместимость сосуда, см $^3$ .

За результат принимают среднее арифметическое двух определений, абсолютное допускаемое расхождение между которыми не должно превышать 5 кг/м<sup>3</sup>. Результат округляют до целого числа.

### 7. ОПРЕДЕЛЕНИЕ ОСТАТКА НА СЕТКЕ

### 7.1. Аппаратура

Анализатор ВС 1C-15—01 или ВС 1C-15—02 с набором сит с сетками номер 1, 25, 063, 056, 0355, 025, 02, 018, 014, 0125, 01, 0063 по ГОСТ 6613.

Весы лабораторные не ниже 4-го класса точности с наибольшим пределом взвещивания не более 1000 г, с ценой деления не более 0,01 г.

### 7.2. Проведение испытания

10,00 г древесной муки сортируют на первом сите в соответствии с порядком установки сит для данной марки муки. По окончании сортирования остаток взвешивают. Результат взвешивания в граммах записывают с точностью до второго десятичного знака. Остаток сортируют на следующем сите с повторением операций.

Порядок установки сит, номера сеток, статическое избыточное давление воздуха и время сортирования указаны в табл. 1.

| Марка<br>муки | Порядок<br>установки<br>сит | Номер<br>сетки | Давление<br>кПа<br>(кгс/м²) | Время<br>сортирова-<br>ния, мин | Марка<br>муки | Порядок<br>установки<br>сит | Номер<br>сетки | Давление<br>кПа<br>(кгс/м²) | Время<br>сортирова-<br>ния, мин |
|---------------|-----------------------------|----------------|-----------------------------|---------------------------------|---------------|-----------------------------|----------------|-----------------------------|---------------------------------|
| 120; 140      | 1                           | 01             | -4(-400)                    | 10                              | Т             | 1                           | 0063           | -4(-400)                    | 12                              |
|               | 2                           | 014            | -2(-200)                    | 5                               |               | 2                           | 018            | <b>—2(—200)</b>             | 6                               |
|               | 3                           | 02             | -2(-200)                    | 1                               |               | 3                           | 025            | -2(-200)                    | 2                               |
| 160; 180      | 1                           | 0125           | -4(-400)                    | 6                               | 250           | 1                           | 025            | -2(-200)                    | 2                               |
|               | 2                           | 018            | -2(-200)                    | 3                               |               | 2                           | 0355           | -2(-200)                    | 1                               |
|               | 3                           | 025            | -2(-200)                    | 1                               | 560           | 1                           | 025            | -4(-400)                    | 4                               |
| 200           | 1                           | 018            | -2(-200)                    | 4                               | 300           | 2                           | 056            | -4(-400)                    | 2                               |

1250

Таблица 1

### 7.1, 7.2. (Измененная редакция, Изм. № 1).

7.3. Обработка результатов

Массовую долю остатка на сетке ( $X_{\epsilon}$ ) в процентах вычисляют по формуле

$$X_6 = 10 \ m$$
,

где m — масса остатка на сетке, г.

За результат принимают среднее арифметическое двух определений, абсолютное допускаемое расхождение между которыми в зависимости от нормы массовой доли остатка на сите не должно превышать значений, указанных в табл. 2.

Результат округляют до первого десятичного знака.

Таблица 2

| Норма массовой доли остатка на сите, % | Абсолютное допускаемое расхождение, % |
|----------------------------------------|---------------------------------------|
| От 0,0 до 1,0                          | 0,3                                   |
| C <sub>B</sub> . 1,0 » 2,0             | 0,5                                   |
| » 2,0 » 5,0                            | 0,8                                   |
| » 5,0 » 18,0                           | 2,0                                   |
| » 18,0                                 | 5,0                                   |

## 8. ОПРЕДЕЛЕНИЕ МАССОВОЙ ДОЛИ ДРЕВЕСИНЫ ЛИСТВЕННЫХ ПОРОД

8.1. Аппаратура и реактивы

Мензурка вместимостью 500 см<sup>3</sup> по ГОСТ 1770.

Цилиндры измерительные с носиком вместимостью 50; 100 см<sup>3</sup> по ГОСТ 1770.

Лупа с 2-х кратным увеличением.

Пластинка стеклянная с нанесенными полями (черт. 1).

Калий марганцовокислый по ГОСТ 20490, раствор с массовой долей 1%.

Кислота соляная по ГОСТ 3118, раствор с массовой долей 12 %.

Аммиак по ГОСТ 3760, раствор с массовой долей 1 %.

Метилоранж, водный раствор с массовой долей 0,1 %.

8.2. Проведение испытания

Около 3 г древесной муки засыпают в мензурку, заливают 100 см<sup>3</sup> раствора марганцовокислого калия, перемешивают 2 мин, доливают мензурку водой, перемешивают еще 2 мин и дают смеси отстояться.

Отстоявшуюся жидкость сливают и промывают муку до получения неокрашенной промывной воды. Промытую муку заливают 50 см<sup>3</sup> раствора соляной кислоты, перемешивают 2 мин, доливают водой, перемешивают еще 2 мин и дают смеси отстояться. Отстоявшуюся жидкость сливают и промывают муку водой до получения нейтральной реакции по метилоранжу. После этого муку заливают 50 см<sup>3</sup> раствора аммиака и выдерживают 1 мин при помешивании. После отстаивания жидкость сливают, а муку высыпают на фильтровальную бумагу и отжимают. При этом частицы древесины лиственных пород приобретают пурпурно-красный цвет. Для уменьшения потерь муки при контроле можно пользоваться капроновой или полиамидной тканью для сит.

Муку рассыпают ровным слоем на ровной горизонтальной поверхности и стеклянной пластинкой прижимают к поверхности. Слой муки должен плотно без вмятин и пустот прилегать к квадратным полям пластинки. Частицы древесины лиственных пород, расположенные в квадратных полях, пересчитывают, пользуясь лупой.

8.3. Обработка результатов

Массовую долю лиственных пород в древесной муке  $(X_{\tau})$  в процентах вычисляют по формуле

$$X_7 = \frac{n}{5 K}$$
,

где n — общее количество частиц древесины лиственных пород (на 5 полях);

K — коэффициент перевода, равный для муки марок: 120, 140 — 16; 180, T — 12.

(Измененная редакция, Изм. № 1).

8.4. Допускается определять массовую долю древесины лиственных пород по сырью, используемому для производства муки, в соответствии с нормативно-технической документацией.

(Введен дополнительно, Изм. № 1).

## 9. ОПРЕДЕЛЕНИЕ МАССОВОЙ ДОЛИ КИСЛОТ

9.1. Аппаратура и реактивы

рН-метр.

Мешалка магнитная.

Плитка электрическая с закрытой спиралью.

Холодильник обратный шариковый по ГОСТ 25336.

Бумага фильтровальная марки Ф по ГОСТ 12026, или бумажный фильтр «белая лента».

Воронка по ГОСТ 25336.

Стаканчики для взвешивания по ГОСТ 25336.

Стакан типа НН вместимостью 400 см<sup>3</sup> по ГОСТ 25336.

Цилиндр измерительный с носиком вместимостью 250 см<sup>3</sup> по ГОСТ 1770.

Колба коническая плоскодонная вместимостью 500 см<sup>3</sup> по ГОСТ 25336.

Бюретка вместимостью 25 см<sup>3</sup> по НТД.

Вода дистиллированная по ГОСТ 6709.

Натрия гидроокись по ГОСТ 4328, раствор концентрации 0,01 моль/дм<sup>3</sup>.

Весы лабораторные 2-го класса точности с наибольшим пределом взвешивания 200 г, с ценой деления не более 0,0001 г.

### (Измененная редакция, Изм. № 1).

9.2. Подготовка к испытанию

Определяют влажность древесной муки по разд. 2.

9.3. Проведение испытания

В стаканчик, взвешенный с точностью до третьего десятичного знака, берут навеску древесной муки около 5 г (с предварительно определенной влажностью) и взвешивают с той же точностью. Навеску высыпают в коническую колбу и заливают 250 см³ дистиллированной воды. Вначале смачивают муку осторожным перемешиванием смеси, после чего выливают остальное количество воды по стенкам колбы для смывания муки. Колбу соединяют с обратным холодильником и нагревают на электрической плитке до кипения. Экстрагирование ведут 1 ч, после чего колбу снимают и выдерживают 5 мин для оседания муки. Содержимое колбы фильтруют в стакан через воронку с применением фильтра, предварительно промытого водой. Остаток на фильтре не промывают. Фильтрат охлаждают в воде до температуры (20±2) °С и титруют раствором гидроокиси натрия концентрации 0,01 моль/дм³ из бюретки до рН 7,5 по рН-метру с использованием магнитной мешалки.

В результате титрования вносят поправку на кислотность воды. Для этого проводят холостой опыт: 250 см<sup>3</sup> дистиллированной воды кипятят в тех же условиях 1 ч и титруют раствором гидроокиси натрия концентрации 0,01 моль/дм<sup>3</sup> аналогично фильтрату.

9.4. Обработка результатов

Массовую долю кислот в древесной муке  $(X_8)$  в процентах (в пересчете на серную кислоту) вычисляют по формуле

$$X_8 = \frac{0.00049 (V - V_1)}{m_1 - m} (100 + X)$$
,

где V— объем раствора гидроокиси натрия концентрации точно 0,01 моль/дм<sup>3</sup>, израсходованный на титрование. см<sup>3</sup>:

 $V_1$  — объем раствора гидроокиси натрия концентрации точно 0,01 моль/дм<sup>3</sup>, израсходованный в холостом опыте, см<sup>3</sup>;

m — масса стаканчика, г;

 $m_1$  — масса стаканчика с мукой, г;

 $\dot{X}$  — влажность муки, %.

За результат принимают среднее арифметическое двух определений, абсолютно допускаемое расхождение между которыми не должно превышать 0,02 %.

Результат округляют до третьего десятичного знака.

### 10. ОПРЕДЕЛЕНИЕ МАССОВОЙ ДОЛИ СМОЛ И МАСЕЛ

### 10.1. Аппаратура и реактивы

Аппарат для экстрагирования типа Э-8, состоящий из насадки для экстрагирования типа НЭТВ-50, холодильника типа ХШ—КШ 5.45/40, исполнения 2 и колбы ПКШ 29/32 вместимостью 100 см³ по ГОСТ 25336.

Шкаф сушильный электрический с автоматическим регулированием температуры с погрешностью  $\pm 2$  °C.

Плитка электрическая с закрытой спиралью.

Баня водяная.

Холодильник прямой по ГОСТ 25336.

Колба коническая плоскодонная вместимостью 250 см³ по ГОСТ 25336.

Бумага фильтровальная марки ФН, вида С по ГОСТ 12026.

Бензол по ГОСТ 5955.

Весы лабораторные 2-го класса точности с наибольшим пределом взвешивания 200 г, с ценой деления не более 0,0001 г.

10.2. Подготовка к испытанию

#### С. 8 ГОСТ 16362-86

Коническую колбу высушивают в сушильном шкафу при температуре (103±2) °С до постоянной массы и взвешивают. Результат взвешивания записывают с точностью до третьего десятичного знака. Из фильтровальной бумаги изготовляют гильзу диаметром 25 мм и длиной 45 мм и взвешивают с той же точностью.

Влажность древесной муки определяют по разд. 2.

10.3. Проведение испытания

Около 4 г древесной муки засыпают в гильзу, взвешивают с той же точностью и помещают в насадку для экстрагирования. В колбу аппарата наливают около 100 см³ бензола. Собранный аппарат помещают на водяную баню и нагревают с таким расчетом, чтобы обеспечивать 5—6 сливов бензола за 1 ч. Экстрагирование ведут 3 ч, после чего аппарат разбирают и экстракт переливают в коническую колбу. Колбу соединяют с прямым холодильником, оттоняют бензол на водяной бане, высушивают в сушильном шкафу при температуре (103±2) °С до постоянной массы и взвешивают. Результат взвешивания в граммах записывают с точностью до третьего десятичного знака.

Допускается вести экстрагирование в аппарате Сокслета (объем бензола 200 см<sup>3</sup>) при времени экстрагирования 6 ч.

10.4. Обработка результатов

Массовую долю смол и масел в древесной муке  $(X_0)$  в процентах вычисляют по формуле

$$X_9 = \frac{m_1 - m}{m_3 - m_2} (100 + X)$$
,

где m — масса колбы, г.

 $m_1$  — масса колбы с высушенным остатком, г;

 $m_{2}$  — масса бумажной гильзы;

 $m_3$  — масса бумажной гильзы с мукой, г;

X — влажность муки, %.

За результат принимают среднее арифметическое двух определений, абсолютно допускаемое расхождение между которыми не должно превышать 0,5 %.

Результат округляют до первого десятичного знака.

### ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством лесной, целлюлозно-бумажной и деревообрабатывающей промышленности СССР

#### РАЗРАБОТЧИКИ

- М. М. Цывин, С. Г. Котцов
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 10.12.86 № 3737
- 3. B3AMEH FOCT 16362-79
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

| Обозначение НТД,<br>на который дана ссылка | Номер пункта | Обозначение НТД,<br>на который дана ссылка | Номер пункта             |
|--------------------------------------------|--------------|--------------------------------------------|--------------------------|
| ГОСТ 1770—74                               | 8.1, 9.1     | ГОСТ 6709—72                               | 9.1                      |
| FOCT 3118—77                               | 8.1          | ГОСТ 9147—80                               | 3.1                      |
| ГОСТ 3760—79                               | 8.1          | ГОСТ 12026—76                              | 10.1                     |
| ГОСТ 4328—77                               | 9.1          | ГОСТ 16361—87                              | 1.1                      |
| ΓOCT 5955—75                               | 10.1         | ΓOCT 20490—75                              | 8.1                      |
| ГОСТ 6613—86                               | 7.1          | ГОСТ 25336—82                              | 2.1, 3.1, 5.1, 9.1, 10.1 |

- Ограничение срока действия снято по протоколу № 3—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 5—6—93)
- 6. ПЕРЕИЗДАНИЕ (июль 1999 г.) с Изменением № 1, утвержденным в декабре 1987 г. (ИУС 4—88)

Редактор В. Н. Копысов
Технический редактор Л. А. Кузнецова
Корректор С. И. Фирсова
Компьютерная верстка Т. В. Александровой

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 28.06.99. Подписано в печать 10.08.99. Усл. печ. л. 1,40. Уч.-изд. л. 0,95. Тираж 113 экз. С 3476. Зак.1662.