

Г О С У Д А Р С Т В Е Н Н Ы Й С Т А Н Д А Р Т СОЮЗА ССР

индий

МЕТОДЫ ОПРЕДЕЛЕНИЯ ЖЕЛЕЗА

ΓΟCT 12645.6-77

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

индий

Методы определения железа

ГОСТ 12645.6—77

Indium. Methods for determination of iron

OKCTY 1709

Дата введения 01.07.78

Настоящий стандарт устанавливает визуально-колориметрический метод определения железа в индии при массовой доле железа от $1\cdot 10^{-5}$ до $1\cdot 10^{-4}$ и фотоколориметрический метод определения железа при массовой доле железа от $1\cdot 10^{-4}$ до $8\cdot 10^{-3}$ %.

(Измененная редакция, Изм. № 1, 2).

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методам анализа и требования безопасности — по ГОСТ 12645.0 и ГОСТ 22306.

(Измененная редакция, Изм. № 2).

2. ВИЗУАЛЬНО-КОЛОРИМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ЖЕЛЕЗА В ИНДИИ

2.1. Сущность метода

Метод основан на свойстве ионов трехвалентного железа образовывать с роданидом комплексное соединение красного цвета, интенсивность которого в органическом слое сравнивается со шкалой сравнения.

2.2. Аппаратура, реактивы и растворы

Посуда кварцевая по ГОСТ 19908.

Цилиндры для фотометрирования с притертой пробкой высотой 18 см и диаметром 1 см.

Кислота соляная особой чистоты по ГОСТ 14261, разбавленная 1:1.

Водорода пероксид по ГОСТ 10929, раствор 30 г/дм3.

Кислота азотная особой чистоты по ГОСТ 11125, разбавленная 1 : 1 и 1 : 9, прокипяченная для удаления окислов азота.

Аммоний роданистый по ГОСТ 27067, раствор 500 г/дм³.

Спирт изоамиловый по ГОСТ 5830.

Стандартные растворы железа.

Раствор А: 0,100 г железного порошка растворяют в 5 см³ азотной кислоты, разбавленной 1:1, прибавляют 25 см³ воды и нагревают до кипения. Раствор охлаждают, переносят в мерную колбу, вместимостью 1 дм³ и доводят до метки азотной кислотой, разбавленной 1:9.

1 см³ раствора А содержит 0,1 мг железа.

Раствор Б: 2 см^3 раствора A помещают в мерную колбу вместимостью 1 дм^3 и доводят до метки водой.

1 см³ раствора Б содержит 0,2 мкг железа.

Раствор Б готовят в день применения.

Издание официальное

Перепечатка воспрещена

*

Вода дистиллированная по ГОСТ 6709, дважды перегнанная в кварцевом аппарате.

Порошок железный восстановленный марки ПЖВ-1 по ГОСТ 9849.

(Измененная редакция, Изм. № 2, 3).

2.3. Проведение анализа

2.3.1. Навеску индия массой 1,000 г помещают в кварцевую колбу вместимостью 100 см³, растворяют при умеренном нагревании плитки, покрытой кварцевом кожухом, в 5 см3 соляной кислоты, разбавленной 1:1, прибавляют две капли раствора пероксида водорода, 5 см³ воды и кипятят до разрушения пероксида водорода.

Переводят раствор в цилиндр с притертой пробкой высотой 18 см и диаметром 1 см, обмывают стенки колбы водой и доводят объем до 10 см3.

Приливают 1 см³ азотной кислоты, разбавленной 1:9, 2 см³ раствора роданистого аммония, 2 см³ изоамилового спирта, закрывают цилиндр пробкой и встряхивают 10 с.

Полученную окраску в органическом слое сравнивают (сбоку) со шкалой сравнения.

Одновременно проводят контрольный опыт, причем соляную кислоту, которая в пробе расходуется на разложение навески, в контрольном опыте выпаривают досуха и далее велут анализ, как указано выше.

(Измененная редакция, Изм. № 1, 2, 3).

2.3.2. Приготовление шкалы сравнения

В ряд цилиндров с притертой пробкой высотой 18 см и диаметром 1 см вводят от 0.5 до 3.5 см³ с интервалом 0,5 см³ стандартного раствора Б, что соответствует содержанию железа от 0,1 до 0,7 мкг с интервалом в 0,1 мкг.

Затем приливают до 10 см³ воды, 1 см³ азотной кислоты, разбавленной 1:9, 2 см³ раствора роданистого аммония, 2 см³ изоамилового спирта и встряхивают 10 с.

Шкалу готовят одновременно с анализом проб. Шкала устойчива в течение 20-30 мин.

(Измененная редакция, Изм. № 2).

2.4. Обработка результатов

2.4.1. Массовую долю железа (Х) в процентах вычисляют по формуле

$$X = \frac{m_1 - m_2}{m \cdot 10000} ,$$

 m_1 — количество железа во взятой навеске, мкг;

 m_2 — количество железа в растворе контрольного опыта, мкг;

m — масса навески индия, г.

2.4.2. За результат анализа принимают среднее арифметическое трех параллельных оп-

Разность между наибольшим и наименьшим из трех результатов параллельных определений с доверительной вероятностью P = 0.95 не должна превышать значений допускаемого расхождения d, трех результатов параллельных определений, рассчитанных по формулам:

 $d_{\rm n}=0.5~\overline{x}_{\rm n}$ для массовой доли железа от $1\cdot 10^{-5}$ до $5\cdot 10^{-5}$ %; $d_{\rm n}=0.3~\overline{x}_{\rm n}$ для массовой доли железа от $5\cdot 10^{-5}$ до $1\cdot 10^{-4}$ %,

где \bar{x}_n — среднее арифметическое результатов трех параллельных определений.

Разность между большим и меньшим из двух результатов анализа одной и той же пробы с доверительной вероятностью P = 0.95 не должна превышать значений допускаемого расхождения dдвух результатов анализа, рассчитанных по формулам:

 $d_a = 0.6 \, \bar{x}_a$ для массовой доли железа от 1 · 10⁻⁵ до 5 · 10⁻⁵ %:

 $d_a = 0.4 \bar{x}_a$ для массовой доли железа от $5 \cdot 10^{-5}$ до $1 \cdot 10^{-4}$ %,

где \bar{x}_a — среднее арифметическое двух сопоставляемых результатов анализа.

(Измененная редакция, Изм. № 2).

3. ФОТОКОЛОРИМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ЖЕЛЕЗА

3.1. Сущность метода

Метод основан на свойстве ионов трехвалентного железа образовывать комплексное соединение с роданидом и измерении оптической плотности окрашенного комплекса в области длин волн 500-520 нм.

3.2. Аппаратура, реактивы и растворы Фотоэлектроколориметр.

Кислота соляная по ГОСТ 14261, разбавленная 1:1.

Водорода пероксид по ГОСТ 10929.

Ацетон по ГОСТ 2603.

Кислота азотная по ГОСТ 11125, разбавленная 1 : 9, прокипяченная для удаления оксидов азота.

Аммоний роданистый по ГОСТ 27067, раствор 500 г/дм³.

Стандартные растворы железа.

Раствор А; готовят следующим образом: 0,100 г железного порошка растворяют в 5 см³ азотной кислоты, разбавленной 1:1, прибавляют 25 см³ воды и нагревают до кипения. Раствор охлаждают, переносят в мерную колбу вместимостью 1 дм³ и доводят до метки азотной кислотой, разбавленной 1:9.

1 см³ раствора А содержит 0,1 мг железа.

Раствор В; готовят следующим образом: 4 см 3 раствора А помещают в мерную колбу вместимостью 100 см 3 и доводят до метки азотной кислотой, разбавленной 1:9.

1 см³ раствора В содержит 4 мкг железа.

Раствор В готовят в день применения.

Вода дистиллированная по ГОСТ 6709, дважды перегнанная в кварцевом аппарате.

Порошок железный восстановленный марки ПЖВ-1 по ГОСТ 9849.

(Измененная редакция, Изм. № 2, 3).

3.3. Проведение анализа

3.3.1. Навеску индия массой 1,000 г помещают в колбу вместимостью 50 см³, растворяют в 10 см³ соляной кислоты, разбавленной 1:1, приливают две капли пероксида водорода и выпаривают до небольшого объема.

Раствор после растворения навески индия с массовой долей железа $X \cdot 10^{-3}$ % переводят в мерную колбу вместимостью 50 см³, доводят до метки водой и берут аликвотную часть 5 см³, которую помещают в мерную колбу вместимостью 25 см³.

Раствор после растворения навески индия с массовой долей железа $X \cdot 10^{-4}$ % помещают в мерную колбу вместимостью 25 см³. Далее анализ ведут одинаково.

Приливают 2,5 см³ азотной кислоты, разбавленной 1 : 9,3 см³ раствора роданистого аммония, 12 см³ ацетона, доводят до метки водой и перемешивают.

Оптическую плотность растворов измеряют на фотоэлектроколориметре, применяя светофильтр с областью светопропускания 500—520 нм, в кювете с толщиной поглощающего свет слоя 50 мм.

Раствором сравнения при измерении оптической плотности служит вода.

Одновременно в тех же условиях проводят контрольный опыт с реактивами для внесения в результат анализа соответствующей поправки.

Количество железа в колориметрируемом объеме устанавливают по градуировочному графику. (Измененная редакция, Изм. № 2, 3).

3.3.2. Построение градуировочного графика

В мерные колбы вместимостью по 25 см³ помещают 0; 0,5; 1,0; 1,5; 2,0 и 2,5 см³ стандартного раствора В, что соответствует 0, 2, 4, 6, 8 и 10 мкг железа, приливают по 2,5 см³ азотной кислоты, разбавленной 1:9,3 см³ раствора роданистого аммония, 1:9,3 см³ ацетона, доводят до метки водой и далее анализ ведут, как указано в п. 3.3.1.

По найденным значениям оптической плотности и соответствующим им содержаниям железа строят градуировочный график.

3.4. Обработка результатов

Массовую долю железа (Х) в процентах вычисляют по формуле

$$X = \frac{m_1 \cdot V}{m \cdot V_1 \cdot 10000} ,$$

где m_1 — количество железа, найденное по градуировочному графику, мкг, за вычетом контрольного опыта;

V — объем мерной колбы для разбавления, см³;

 V_1 — объем аликвотной части раствора, взятый для колориметрирования, см³;

т — масса навески индия, г.

3.4.1. За результат анализа принимают среднее арифметическое результатов трех параллельных определений.

С. 4 ГОСТ 12645.6-77

Разность между наибольшим и наименьшим из трех результатов параллельных определений с доверительной вероятностью P = 0.95 не должна превышать значения допускаемого расхождения $d_{\rm n}$ трех результатов параллельных определений, рассчитанного по формуле

$$d_{\rm n} = 0.3 \; \bar{x}_{\rm n}$$

где \overline{x}_n — среднее арифметическое трех результатов параллельных определений. Разность между большим и меньшим из двух результатов анализа одной и той же пробы с доверительной вероятностью P = 0.95 не должна превышать значения допускаемого расхождения d, двух результатов анализа, рассчитанного по формуле

$$d_{\rm a} = 0.4 \, \bar{x}_{\rm a}$$

где \bar{x}_a — среднее арифметическое двух сопоставляемых результатов анализа. (Измененная редакция, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР РАЗРАБОТЧИКИ

- А.П. Сычев, Л.К. Ларина (руководитель темы), М.Г. Саюн (руководитель темы), В.Н. Макарцева, Н.С. Беленкова, Е.В. Лисицина, Н.А. Романенко, В.А. Колесникова
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 08.07.77 № 1715

Изменение № 3 принято Межгосударственным Советом по стандартизации, метрологии и сертификации 15.03.94 (отчет Технического секретариата № 1)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Республика Азербайджан	Азгосстандарт
Республика Белоруссия	Госстандарт Белоруссии
Республика Казахстан	Госстандарт Республики Казахстан
Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Туркменистан	Главная государственная инспекция Туркменистана
Республика Узбекистан	Узгосстандарт
Украина	Госстандарт Украины

3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ЛОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта
FOCT 2603—79	3.2
ΓOCT 4461—76	3.2
FOCT 5830—79	2.2
ГОСТ 6709—72	2.2, 3.2
FOCT 9849—86	2.2, 3.2
FOCT 10929—76	2.2, 3.2
ΓOCT 11125—84	2.2, 3.2
ΓOCT 12645.0—83	1.1
ΓOCT 14261—77	2.2, 3.2
ΓΟCT 19908—90	2.2
ΓOCT 22306—77	1.1
ГОСТ 27067—86	2.2, 3.2

- 4. Ограничение срока действия снято по протоколу 3—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 5—6—93)
- ПЕРЕИЗДАНИЕ (март 1998 г.) с Изменениями № 1, 2, 3, утвержденными в феврале 1983 г., декабре 1987 г., июне 1996 г. (ИУС 5—83, 3—88, 9—96)

Редактор В.Н. Копысов
Технический редактор О.Н. Власова
Корректор В.Е. Нестерова
Компьютерная верстка Е.Н. Мартемьяновой

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 23.02.98. Подписано в печать 07.04.98. Усл. печ. л. 0,93. Уч.-изд. л. 0,50. Тираж 114 экз. С410. Зак. 269.