изменения, принятые К МЕЖГОСУЛАРСТВЕННЫМ СТАНЛАРТАМ

77 МЕТАЛЛУРГИЯ

MKC 77.120.60 Группа В59

Изменение № 4 ГОСТ 17261—77 Цинк. Спектральный метод анализа

Принято Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 30 от 07.12.2006)

Зарегистрировано Бюро по стандартам МГС № 5676

За принятие изменения проголосовали национальные органы по стандартизации следующих государств: AZ, AM, BY, KZ, KG, MD, RU, TJ, TM, UZ, UA [коды альфа-2 по МК (ИСО 3166) 004]

Дату введения в действие настоящего изменения устанавливают указанные национальные органы по стандартизации*

Вводная часть. Исключить марки: ЦВ1, Ц1С, Ц2С, Ц3С; заменить значение алюминия: 0,002 на 0,001.

Пункт 1.1 (последний абзац), раздел 2 (пятый абзац) дополнить словами: «или других размеров, в зависимости от размеров применяемых стандартных образцов».

Пункт 1.1а, подпункты 1.1а.1, 1.1а.2 изложить в новой редакции; дополнить подпунктами — 1.1a.3, 1.1a.4:

«1.1а. Общие требования к методу анализа — по ГОСТ 25086—87 со следующими дополнениями.

1.1а.1. За результат анализа принимают среднеарифметическое значение параллельных определений, полученных в условиях повторяемости (результаты получают одним и тем же методом на идентичных объектах испытаний, в одной и той же лаборатории, одним и тем же оператором, с использованием одного и того же оборудования, в пределах короткого промежутка времени), если выполняется условие приемлемости по формуле

$$|X_1 - X_2| \le r,\tag{1}$$

где X_1 и X_2 — результаты двух параллельных определений; r — значение предела повторяемости, нормированное в методике анализа (при доверительной вероятности P = 0.95).

(Продолжение см. с. 58)

^{*} Дата введения в действие на территории Российской Федерации — 2008-09-01.

Если расхождение результатов параллельных определений превыщает значение r, нормированное в методике анализа, проводят еще два параллельных определения.

За результат анализа принимают среднеарифметическое значение результатов четырех определений, если выполняется условие

$$(X_{\text{max}} - X_{\text{min}}) \le CR_{0.95}(4),$$
 (2)

где X_{\max} и X_{\min} — максимальное и минимальное значения результатов четырех определений;

 $CR_{0.95}(4)$ — критический диапазон.

Критический диапазон $CR_{0.95}(4)$ вычисляют по формуле

$$CR_{0.95}(4) = f(4) \cdot \sigma_r, \tag{3}$$

где f(4) — коэффициент критического диапазона для четырех определений (f(4) = 3,6);

 $\sigma_{\rm r}$ — среднеквадратичное отклонение повторяемости.

Если диапазон результатов четырех определений ($X_{\max} - X_{\min}$) превышает $CR_{0.95}(4)$, за результат анализа принимают медиану результатов четырех определений: отбрасывают наименьший (X_{\min}) и наибольший (X_{\max}) результаты и вычисляют среднеарифметическое значение двух оставшихся

результатов определений
$$\frac{X_2 + X_3}{2}$$
 .

1.1а.2. Приемлемость результатов анализа, полученных в условиях воспроизводимости (результаты получают одним и тем же методом, на идентичных объектах испытаний, в разных лабораториях, разными операторами, с использованием различного оборудования), оценивают сравнением разности этих результатов с критической разностью $CD_{0,95}$ по формуле

$$\left| \overline{X}_1 - \overline{X}_2 \right| \le C D_{0.95}, \tag{4}$$

где \overline{X}_1 и \overline{X}_2 — результаты анализа массовой доли определяемого компонента, полученные в первой и второй лабораториях соответственно;

 $CD_{0,95}$ — значения критической разности.

Значения критической разности $CD_{0,95}$ вычисляют по формулам (5) — (7), когда результаты анализа рассчитаны: как среднеарифметическое значение результатов двух параллельных определений в обеих ла-

(Продолжение см. с. 59)

бораториях — (5); как среднеарифметическое значение результатов двух параллельных определений в первой лаборатории и среднеарифметическое значение результатов четырех определений во второй лаборатории — (6); как среднеарифметическое значение результатов четырех определений в обеих лабораториях — (7):

$$CD_{0.95} = \sqrt{R^2 - 0.5 r^2};$$
 (5)

$$CD_{0.95} = \sqrt{R^2 - 0.63 r^2};$$
 (6)

$$CD_{0.95} = \sqrt{R^2 - 0.75 \, r^2} \,, \tag{7}$$

где R — предел воспроизводимости, нормированный в методике анализа (при доверительной вероятности P = 0.95);

r — предел повторяемости, нормированный в методике анализа (при доверительной вероятности P=0.95).

Значения критической разности $CD_{0,95}$ вычисляют по формулам (8) и (9), когда результаты анализа рассчитаны: как среднеарифметическое значение результатов двух параллельных определений в первой лаборатории и как медиана во второй лаборатории — (8); как среднеарифметическое значение результатов четырех определений в первой лаборатории и как медиана во второй лаборатории — (9):

$$CD_{0.95} = \sqrt{R^2 - 0.60 \, r^2};$$
 (8)

$$CD_{0.95} = \sqrt{R^2 - 0.73 \, r^2} \,. \tag{9}$$

Значение критической разности $CD_{0,95}$ вычисляют по формуле (10), когда результаты анализа рассчитаны как медиана в обеих лабораториях

$$CD_{0.95} = \sqrt{R^2 - 0.70 \, r^2} \,. \tag{10}$$

Если критическая разность не превышена, то приемлемы оба результата анализа, выполненные двумя лабораториями, и в качестве окончательного результата используют их общее среднеарифметическое значение.

В противном случае выясняют причины наличия противоречий между результатами двух лабораторий (наличие систематической ошибки анализа в одной из лабораторий, различие между испытуемыми проба-

(Продолжение см. с. 60)

- ми) и применяют необходимые корректирующие меры (совместный отбор и подготовка пробы, участие референтной лаборатории и др.) в соответствии с ГОСТ ИСО 5725-6 (пп. 5.3.3, 5.3.4).
- 1.1а.3. Результаты анализа представляют числовым значением, которое должно оканчиваться цифрой того же разряда, что и числовое значение погрешности Δ, гарантируемой при применении метода анализа (далее погрешность метода анализа), установленного настоящим стандартом.
- 1.1а.4. Рекомендуемый порядок контроля точности и стабильности результатов при реализации методик анализа в лаборатории приведен в приложении 1».

Пункт 4.2 изложить в новой редакции:

«4.2. Параллельные определения получают на одной фотопластинке по двум спектрограммам каждое при фотографической регистрации спектра и из трех измерений каждое при фотоэлектрической регистрации.

Метрологические характеристики и нормативы методики анализа не должны превышать значений, приведенных в табл. 2.

Таблица 2 Значения метрологических характеристик и нормативы методики анализа при доверительной вероятности P=0.95

В процентах

Определя- емый элемент	Массовая доля элемента	Средне- квадрати- ческое отклонение повторяе- мости о	Предел повторяе- мости при n = 2 r	Средне- квадрати- ческое отклонение воспроиз- водимости σ _R	Предел воспроизволимости при m = 2 R	Границы погреш- ности ±∆
Железо	0,0010	0,00008	0,0002	0,00010	0,0003	0,0002
	0,0020	0,00016	0,0004	0,00020	0,0006	0,0004
	0,0040	0,00032	0,0009	0,00040	0,0011	0,0008
	0,0080	0,00064	0,0018	0,00080	0,0022	0,0016
	0,010	0,0008	0,002	0,0010	0,003	0,002
	0,020	0,0016	0,004	0,0020	0,006	0,004
	0,040	0,0032	0,009	0,0040	0,011	0,008
	0,080	0,0064	0,018	0,0080	0,022	0,016
	0,20	0,016	0,04	0,020	0,06	0,04

(Продолжение см. с. 61)

(Продолжение Изменения № 4 к ГОСТ 17261—77)

Продолжение табл. 2

В	процентах
---	-----------

Определя- емый элемент	Массовая доля элемента	Средне- квадрати- ческое отклонение повторяе- мости о,	Предел повторяе-мости при n = 2	отклонение	Предел воспроизводимости при m = 2 R	Границы погреш- ности ± Δ
Кадмий	0,0010	0,00008	0,0002	0,00010	0,0003	0,0002
	0,0020	0,00016	0,0004	0,00020	0,0006	0,0004
	0,0040	0,00032	0,0009	0,00040	0,0011	0,0008
	0,0080	0,00064	0,0018	0,00080	0,0022	0,0016
	0,010	0,0008	0,002	0,0010	0,003	0,002
	0,020	0,0016	0,004	0,0020	0,006	0,004
	0,040	0,0032	0,009	0,0040	0,011	0,008
	0,080	0,0064	0,018	0,0080	0,022	0,016
	0,10	0,008	0,02	0,010	0,03	0,02
	0,20	0,016	0,04	0,020	0,06	0,04
	0,30	0,024	0,07	0,030	0,08	0,06
	0,40	0,032	0,09	0,040	0,11	0,08
Медь	0,00050 0,0010 0,0020 0,0040 0,0080 0,010 0,020 0,040 0,080 0,10	0,000040 0,00008 0,00016 0,00032 0,00064 0,0016 0,0032 0,0064 0,008	0,00011 0,0002 0,0004 0,0009 0,0018 0,002 0,004 0,009 0,018 0,02	0,000050 0,00010 0,00020 0,00040 0,00080 0,0010 0,0020 0,0040 0,0080 0,010	0,00014 0,0003 0,0006 0,0011 0,0022 0,003 0,006 0,011 0,022 0,03	0,00010 0,0002 0,0004 0,0008 0,0016 0,002 0,004 0,008 0,016 0,02
Олово	0,00070	0,000056	0,00015	0,000070	0,00020	0,00014
	0,0010	0,00008	0,0002	0,00010	0,0003	0,0002
	0,0020	0,00016	0,0004	0,00020	0,0006	0,0004
	0,0040	0,00032	0,0009	0,00040	0,0011	0,0008

(Продолжение см. с. 62)

Продолжение табл. 2 В процентах

Dipolentax							
Определя- емый элемент	Массовая доля элемента	Средне- квадрати- ческое отклонение повторяе- мости о,	Предел повторяе- мости при n = 2 r	Средне- квадрати- ческое отклонение воспроиз- водимости σ _R	Предел воспроизволимости при <i>m</i> = 2 <i>R</i>	Границы погреш- ности ±Δ	
Олово	0,0080	0,00064	0,0018	0,00080	0,0022	0,0016	
31.020	0,010	0,0008	0,002	0,0010	0,003	0,002	
	0,020	0,0016	0,004	0,0020	0,006	0,004	
	0,050	0,0040	0,011	0,0050	0,014	0,010	
		ļ_ 				<u> </u>	
Сурьма	0,010	0,0008	0,002	0,0010	0,003	0,002	
	0,020	0,0016	0,004	0,0020	0,006	0,004	
	0,040	0,0032	0,009	0,0040	0,011	0,008	
	0,080	0,0064	0,018	0,0080	0,022	0,016	
	0,10	0,008	0,02	0,010	0,03	0,02	
	0,20	0,016	0,04	0,020	0,06	0,04	
	0,40	0,032	0,09	0,040	0,11	0,08	
Свинец	0,0020	0,00010	0,0003	0,00014	0,0004	0,0003	
	0,0030	0,00015	0,0004	0,00021	0,0006	0,0004	
	0,0040	0,00020	0,0006	0,00028	0,0008	0,0005	
1	0,0080	0,00040	0,0011	0,00056	0,0015	0,0010	
	0,010	0,0005	0,001	0,0007	0,002	0,001	
	0,020	0,0010	0,003	0,0014	0,004	0,003	
	0,040	0,0020	0,006	0,0028	0,008	0,005	
	0,080	0,0040	0,011	0,0056	0,015	0,010	
	0,10	0,005	0,01	0,007	0,02	0,01	
	0,20	0,010	0,03	0,014	0,04	0,03	
	0,30	0,012	0,03	0,015	0,04	0,03	
i	0,60	0,024	0,07	0,030	0,08	0,06	
	1,00	0,04	0,11	0,05	0,14	0,10	
	2,00	0,08	0,22	0,10	0,28	0,20	
	3,00	0,12	0,33	0,15	0,42	0,30	

(Продолжение см. с. 63)

(Продолжение Изменения № 4 к ГОСТ 17261-77)

Окончание табл. 2

В процентах

Определя- емый элемент	Массовая доля элемента	Средне- квадрати- ческое отклонение повторяе- мости о,	Предел повторяе- мости при <i>n</i> = 2 <i>r</i>	отклонение	Предел воспроизводимости при $m=2$ R	Границы погреш- ности ±∆
Алюми- ний	0,0010 0,0020 0,0050 0,010 0,020 0,030	0,00010 0,00020 0,00050 0,0010 0,0020 0,0030	0,0003 0,0006 0,0014 0,003 0,006 0,008	0,00011 0,00022 0,00055 0,0011 0,0022 0,0033	0,0003 0,0006 0,0015 0,003 0,006 0,009	0,0002 0,0004 0,0011 0,002 0,004 0,006

Значения метрологических характеристик и нормативы методики анализа (при доверительной вероятности P=0,95) для промежуточных массовых долей элементов рассчитывают методом линейной интерполяции или по формулам:

- для железа, меди, кадмия, олова, сурьмы

$$\sigma_{\rm r} = 0.08 \, \overline{X} \, ; \tag{11}$$

$$\sigma_{\rm R} = 0.10 \, \overline{\overline{X}} \,; \tag{12}$$

$$r = 0.22 \overline{X}; \tag{13}$$

$$R = 0.28 \, \overline{\overline{X}} \, ; \tag{14}$$

$$\Delta = 0.20 \, \overline{\overline{X}} \, ; \tag{15}$$

- для свинца в диапазоне массовых долей от 0,0020~% до 0,20~% включительно

$$\sigma_{\rm r} = 0.05 \, \overline{X} \, ; \tag{16}$$

$$\sigma_{\mathbf{R}} = 0.07 \, \overline{\overline{X}} \,; \tag{17}$$

$$r = 0.14 \,\overline{X} \,; \tag{18}$$

(Продолжение см. с. 64)

(Продолжение Изменения № 4 к ГОСТ 17261—77)

$$R = 0.19 \, \overline{\overline{X}} \, ; \tag{19}$$

$$\Delta = 0.13 \, \overline{\overline{X}} \,; \tag{20}$$

- для свинца в диапазоне массовых долей от 0,20~% до 3,00~% включительно

$$\sigma_{\rm r} = 0.04 \, \widetilde{X} \, ; \tag{21}$$

$$\sigma_{\mathbf{R}} = 0.05 \, \overline{\overline{X}} \,; \tag{22}$$

$$r = 0.11 \overline{X}; \tag{23}$$

$$R = 0.14 \; \overline{\overline{X}} \; ; \tag{24}$$

$$\Delta = 0.10 \, \overline{\overline{X}} \, ; \tag{25}$$

для алюминия

$$\sigma_{\rm r} = 0.10 \, \overline{X} \, ; \tag{26}$$

$$\sigma_{\mathbf{R}} = 0.11 \, \overline{\overline{X}} \,; \tag{27}$$

$$r = 0.28 \, \overline{X} \,; \tag{28}$$

$$R = 0.30 \,\overline{\overline{X}} \,; \tag{29}$$

$$\Delta = 0.21 \, \overline{\overline{X}} \,, \tag{30}$$

где σ_r — среднеквадратичное отклонение повторяемости;

 σ_R — среднеквадратичное отклонение воспроизводимости;

r — значение предела повторяемости;

R — значение предела воспроизводимости;

 Δ — границы погрешности;

 \overline{X} — среднеарифметическое значение или медиана результатов определений;

 $\overline{\overline{X}}$ — среднеарифметическое значение результатов анализа».

Стандарт дополнить приложением — 1:

(Продолжение см. с. 65)

«Приложение 1 (рекомендуемое)

Контроль точности и стабильности результатов анализа

1. Оперативный контроль точности результатов анализа

Контроль точности результатов анализа цинка включает в себя контроль правильности, воспроизводимости, промежуточной прецизионности и повторяемости.

Периодичность проведения контроля устанавливают в каждой лаборатории в зависимости от количества выполняемых определений каждого элемента и состояния аналитических работ (смена реактивов, растворов, аппаратуры, длительный перерыв в работе и т. д.).

При неудовлетворительных результатах контроля процедуру контроля точности анализа повторяют. При повторном получении отрицательных результатов выясняют причины неудовлетворительных результатов контроля и устраняют их.

1.1. Оперативный контроль повторяемости

Образцами для контроля являются анализируемые пробы.

Норматив контроля — предел повторяемости r для результатов n параллельных определений (n=2) или критический диапазон $CR_{0,95}(4)$ согласно 1.1a.1 настоящего стандарта.

Для контроля повторяемости сравнивают расхождения результатов параллельных определений, полученных при анализе пробы.

1.2. Оперативный контроль промежуточной прецизионности

Образцами для контроля являются анализируемые пробы.

Норматив контроля — предел промежуточной прецизионности R_W . Для контроля промежуточной прецизионности сравнивают два результата анализа одной и той же пробы, полученные одним и тем же методом в соответствии с настоящим стандартом в разных условиях (время, калибровка, оператор, оборудование, реактивы) в пределах лаборатории.

Результат контроля считают удовлетворительным при выполнении условия

(Продолжение см. с. 66)

$$\left|\overline{X}_{1} - \overline{X}_{2}\right| \le R_{W}, \tag{1}$$

где \overline{X}_1 и \overline{X}_2 — результаты анализа пробы;

 $R_{\rm W}$ — значение предела промежуточной прецизионности.

Предел промежуточной прецизионности не превышает предела воспроизводимости *R*, нормированного в методике анализа, и оценивается лабораторией в соответствии с ГОСТ ИСО 5725-3 или ГОСТ ИСО 5725-6.

1.3. Оперативный контроль воспроизводимости

Образцами для контроля являются анализируемые пробы.

Норматив контроля — критическая разность $CD_{0.95}$ согласно 1.1a.2 настоящего стандарта.

Для контроля воспроизводимости сравнивают результаты анализа одной и той же пробы, выполненные одним и тем же методом в соответствии с настоящим стандартом в разных лабораториях.

Контроль воспроизводимости проводят при возникновении спорных ситуаций:

- между двумя лабораториями;
- при проверке совместимости результатов определений, полученных при сравнительных испытаниях (при проведении аккредитации лабораторий и инспекционного контроля).

1.4. Оперативный контроль правильности

Контроль правильности проводят при помощи стандартных образцов состава цинка или по альтернативному (независимому) методу.

Норматив контроля — критическое значение K.

1.4.1. Оперативный контроль правильности по стандартным образцам

Образцами для контроля являются стандартные образцы, разработанные согласно ГОСТ 8.315.

Одновременно с анализом проб, в соответствии с методами настоящего стандарта, проводят анализ стандартного образца состава цинка. Содержание определяемого элемента в стандартном образце и анализируемой пробе не должно отличаться более чем в два раза.

Результат анализа стандартного образца сравнивают с аттестованной характеристикой элемента в стандартном образце.

(Продолжение см. с. 67)

Результат контроля считают удовлетворительным при выполнении *V***СЛОВИЯ**

$$\left| \overline{X} - X_{\text{aT}} \right| \le K \,, \tag{2}$$

где \overline{X} — результат анализа определяемого элемента в стандартном образце, полученный из результатов *п* единичных определений;

 $X_{\rm ar}$ — аттестованное значение элемента в стандартном образце; K — критическое значение, вычисляемое по формуле

$$K = 2\sqrt{\sigma_{\rm R}^2 - \sigma_{\rm r}^2 \left(1 - \frac{1}{n}\right) + S_{\rm (A)}^2},$$
 (3)

где σ_R — среднеквадратичное отклонение воспроизводимости;

 σ_r — среднеквадратичное отклонение повторяемости;

n — число результатов единичных определений стандартного образ-

 $S_{(\Lambda)}$ — оценка среднеквадратичного отклонения аттестованного значения стандартного образца.

1.4.2. Оперативный контроль правильности по альтернативному (независимому) методу

Образцами для контроля являются анализируемые пробы.

Сравнивают результаты анализа одних и тех же проб, полученные по двум принципиально различающимся методам, включенным в настоящий стандарт, или по стандартизованному и какому-либо другому аттестованному методу, имеющему погрешность, не превышающую погрешность стандартизованного метода.

Результат контроля считают удовлетворительным при выполнении условия

$$\left|\overline{X}_1 - \overline{X}_2\right| \le K \,, \tag{4}$$

где \overline{X}_1 и \overline{X}_2 — результаты анализа, полученные по контролируемому и контрольному методам соответственно;

К - критическое значение, вычисляемое по формуле

$$K=2S, (5)$$

где S — оценка общего среднеквадратичного отклонения для контролируемого и контрольного методов

(Продолжение см. с. 68)

$$S = \sqrt{S_1^2 + S_2^2} \,, \tag{6}$$

где S_1 и S_2 — оценки среднеквадратичных отклонений контролируемого и контрольного методов соответственно:

$$S_1 = \sqrt{\sigma_{R_1}^2 - \sigma_{r_1}^2 \left(1 - \frac{1}{n_1}\right)};$$
 (7)

$$S_2 = \sqrt{\sigma_{R_2}^2 - \sigma_{r_2}^2 \left(1 - \frac{1}{n_2}\right)},$$
 (8)

где σ_{R_1} и σ_{R_2} — среднеквадратичные отклонения воспроизводимости контролируемого и контрольного методов соответственно;

 σ_{r_1} и σ_{r_2} — среднеквадратичные отклонения повторяемости контролируемого и контрольного методов соответственно:

 n_1 и n_2 — число результатов единичных определений по контролируемому и контрольному методам соответственно.

2. Контроль стабильности результатов анализа в пределах лаборатории

Контроль стабильности показателей прецизионности и правильности результатов анализа в лаборатории осуществляют по ГОСТ ИСО 5725-6 (разд. 6)».

(ИУС № 3 2008 г.)