ЦНИИЭП учебных зданий Госкомархитектуры

Рекомендации

по расчету и размещению учреждений системы общественного обслуживания с учетом культурно-бытовых связей в городе

Центральный научно-исследовательский и проектный институт типового и экспериментального проектирования школ, дошкольных учреждений, средних и высших учебных заведений (ЦНИИЭП учебных зданий) Госкомархитектуры

Рекомендации

по расчету и размещению учреждений системы общественного обслуживания с учетом культурно-бытовых связей в городе

Рекомендованы к изданию решением Научно-технического совета ЦНИИЭП учебных зданий Госкомархитектуры.

Рекомендации по расчету и размещению учреждений системы общественного обслуживания с учетом культурнобытовых связей в городе/ЦНИИЭП учебных зданий.- М.: Стройиздат, 1989.- 48 с.

Рассмотрена пространственно-связевая система размещения учреждений и предприятий общественного обслуживания. Дан пример расчета численности тяготеющего к обслуживанию населения для города на 1,5 млн жителей.

Для инженерно-технических работников и проектировщиков научно-исследовательских и проектных организаций.

Табл. 15, ил. 10

Инструкт.-нормат., І вып.-169-88

ПРЕПИСЛОВИЕ

На протяжении последних десятилетий наибольшее распространение в практике проектирования и строительства нашла ступенчатая система построения сети культурно-бытовых учреждений.

В качестве основного принципа этой системы выдвигается, с одной стороны, приближение повседневного обслуживания к жилым комплексам, учреждениям и предприятиям, а с другой — концентрация учреждений, не связанных с их повседневным посещением, в более крупных городских образованиях.

Существуют различные варианты ступенчатой планировочной структуры жилого района, предусматривающие формирование его из микрорайонов или жилых групп, включающих в себя микрорайонные функции, а также разделение на жилые районы меньшей величины. Конкретное размещение культурно-бытовых учреждений и предприятий имеет самые разнообразные варианты.

Большое значение для теоретических разработок и практической организации ступенчатой системы имеет ориентировочное распределение передвижений между культурно-бытовыми объектами, размещаемыми в структурных центрах обслуживания и рассредоточенными в городской застройке.

Особая роль в распределении передвижений населения принадлежит центральному району города. Изучение конкретных данных показало, что посещаемость центральных районов городов в несколько раз выше, чем остальных районов. Большинство городских жителей (свыше 70%) несколько раз в месяц или чаще посещают центральную часть города. Помимо связей с городским центром, на передвижение населения большое влияние оказывают трудовые связи. Например,с переездом в новые жилые районы только приблизительно 20% из переехавших меняют место работы. Таким образом, городское пространство оказывается как бы "пронизанным" трудовыми связями. На загрузку различных культурно-бытовых учреждений влияет доля населения, приезжающего на работу из других районов города, что также необходимо учитывать при проектировании. В практике проектирования вместимости культурно-бытовых учреждений и предприятий определяются перемножением численности жителей в пределах контуров планировочных элементов на соответствующие нормы. Такая трактовка функционального назначения большинства учреждений и предприятий, входящих в состав общественных центров микрорайонов,

жилых и планировочных районов, оказалась несостоятельной и не соответствующей реальному процессу их функционирования.

Часть людей, проживающих на территориях различных планировочных элементов, перераспределяется в дневное время на городской территории, уезжая в различные районы на работу и по другим надобностям. Люди, посещающие культурно-бытовые объекты непосредственно с территории какого-либо рассматриваемого планировочного элемента, направляются к объектам, расположенным не только в пределах этого элемента, но и на других территориях. Кроме того, учреждения и предприятия в указанных выше центрах посещаются из других районов или специально, или попутно от расположенных рядом мест приложения труда. Наиболее связаны с планировочной структурой здания учебно-вспомогательных учреждений, размещаемые в жилой группе (детские ясли-сады) и в микрорайоне (общеобразовательная школа).

Учреждения, предусмотренные ступенчатой системой в общественных центрах микрорайонов жилых и планировочных районов, весьма различны. По назначению они не связаны друг с другом, их посещения не определяются традиционными радиусами обслуживания. Поэтому отдельными специалистами ступенчатая система была как бы отделена от границ планировочных элементов и представлена в виде схемы взаимного размещения культурно-бытовых учреждений и предприятий с определенными зонами обслуживания. Была предложена дифференциация расчетных показателей по категориям потребителей (для жителей, работающих и транзитных), находящихся в расчетный момент времени в пределах зон, очерченных радиусами обслуживания. Эта дифференциация была развита специалистами ЦНИИЭП торгово-бытовых зданий и туристских комплексов для функциональной системы построения сети торгово-бытового обслуживания.

Однако далеко не все потребители, находящиеся в пределах какой-либо зоны обслуживания, посещают размещаемые в ней учреждения. Многие пользуются аналогичными учреждениями выехав за пределы границ этой зоны в другие районы города и, наоборот, культурно-бытовые объекты, расположенные в рассматриваемой зоне обслуживания посещают люди, находящиеся за ее пределами. Кроме того, дифференциация градостроительных нормативов по категориям потребителей производится в зависимости от меняю-

¹Анисимов Б.П., Гусев В.К. Оптимальная сетка ступенчатой организации обслуживания // Городское хозяйство Москвы. 1969. № 4. С 32—35.

²Анисимов А.В., Кастель И.Н. Дифференцированный расчет сетей обслуживания // Городское хозяйство Москвы. 1969. № 4. С 29—31.

³Орлов М.А., Федосеева И.Р., Хайт В.Л. и др. Проектирование сети предприятий торговобытового обслуживания в городах.— М.: Стройиздат, 1975.—160 с.

щихся ролей, в которых выступает один и тот же человек. При этом содержание понятий "работающие, "транзитные" и "жители" неустойчиво.

С точки зрения процесса культурно-бытового обслуживания населения, категория "работающих", пользующихся общедоступными учреждениями, вообще не существует. Есть люди, вышедшие с места работы и оказавшиеся в прилегающей городской застройке или уехавшие в другие районы города. Но тогда они становятся "транзитными" и "жителями". "Транзитные" потребители по существу являются и "работающими" и "жителями", находящимися в определенное время суток на городской территории вне места работы и жительства и проживающими в пределах города или приехавшими из пригорода и агломерации.

Таким образом, как в соответствии со ступенчатой, так и функциональной системами, вместимость различных культурно-бытовых учреждений и предприятий, входящих в какой-либо центр обслуживания, определяют перемножением соответствующих. норм на одну и ту же численность населения, проживающего в пределах рассматриваемого планировочного элемента или дифференцированных норм на одну и ту же численность "жителей", "работающих" и "транзитных" потребителей в пределах какой-либо зоны обслуживания. Такой расчет не учитывает конкретного взаимного размещения культурно-бытовых объектов, их целевую и попутную посещаемость, т. е. взаимодействия населения с элементами городской застройки и конкретное количество и размещение этих элементов.

Чтобы учесть специфику, вытекающую из величины города и его роли в системе расселения, специалистами ЦНИИЭП торгово-бытовых зданий и туристских комплексов были разработаны нормативы расчета сети предприятий торговли и общественного питания, дифференцированные для городов с населением от 50 тыс. до 1 млн. жителей и выше, в зависимости от того, являются или не являются эти города центрами малых или средних систем расселения и какие административные функции они несут или не несут (функции районных, областных центров, центров союзных и автономных республик). В этих метоликах дифференцируются только суммарные общегородские нормативы в зависимости от ориентировочных, общих признаков, характеризующих рассматриваемый город (в том числе и от возможного притока приезжего населения). Такая дифференциация нормативов не позволяет учесть конкретные культурно-бытовые связи населения, находящегося в различных местах городской застройки, с конкретными учреждениями и предприятиями обслуживания и определить их вместимость.

¹ Методические указания по составлению перспективных планов (схем) развития и размещения сети предприятий различной торговоли и общественного питания в развитии генеральных планов городов/ЦНИИЭП торгово-бытовых зданий и туристских комплексов.— М.: ЦНТИ по гражданскому строительству и архитектуре, 1982.—88 с.

Следовательно, требуется внедрение в практику проектирования новых принципов формирования вероятно посещаемых культурно-бытовых объектов и комплексного расчета их вместимости на основе культурно-бытовых связей. Такая методика расчета разработана ЦНИИЭП учебных зданий и применена для различных городов при расчете вместимости учреждений и предприятий культурно-бытового обслуживания, посещение которых носит вероятностный характер.

Появившийся опыт и дополнительные исследования позволили разработать принципы формирования пространственно-связевой системы размещения учреждений и предприятий общественного обслуживания, дать развернутую модель перераспределения и расчета численности тяготеющего к обслуживанию населения и показать широкие возможности в применении разработанных предложений.

Настоящие Рекомендации позволят специалистам обеспечить максимальное соответствие проектируемой сети и типов общественных зданий реальным культурно-бытовым связям.

Рекомендации разработаны ЦНИИЭП учебных зданий (канд. архит. *Б.П. Анисимов*, инж. *К.А. Пушкин* — разд. II приложения).

¹ Методика вероятностного расчета вместимости культурно-бытовых учреждений на основе действующих норм /ЦНИИЭП учебных зданий.— М.: Стройиздат, 1983.—17 с.

1. ПРОСТРАНСТВЕННО-СВЯЗЕВАЯ СИСТЕМА РАЗМЕЩЕНИЯ УЧРЕЖДЕНИЙ И ПРЕДПРИЯТИЙ ОБЩЕСТВЕННОГО ОБСЛУЖИВАНИЯ

- 1.1. Формирование типов и комплексов общественных зданий, предназначенных для обслуживания городского населения, во многом определяется рациональными культурно-бытовыми связями. Основу классификации этих связей составляет функциональная специфика взаимодействия между культурно-бытовыми объектами и местами нахождения людей на городской территории.
 - 1.2. По характеру можно выделить следующие группы культурно-бытовых связей:
- с учреждениями, сопутствующими месту жительства (детские ясли-сады, общеобразовательные школы, спортивные площадки, залы, кружковые помещения в жилой застройке и т. п.);

ограниченные преимущественно пешеходной доступностью от различных мест нахождения людей, но не связанные непосредственно только с местом жительства и посещаемые различными контингентами населения (предприятия общественного питания, магазины продовольственных товаров, аптеки, отделения связи и т. п.);

с учреждениями и предприятиями, посещаемыми преимущественно периодически и эпизодически, различными контингентами населения, размещаемыми в пределах от 3 до 5 тыс. м друг от друга (магазины непродовольственные, рестораны, кафе, кинотеатры, клубы и т. п.);

с единичными, специализированными и уникальными учреждениями, предприятиями и сооружениями.

- **1.3.** Учреждения и предприятия, сопутствующие месту жительства, целесообразно размещать в глубине жилой застройки соразмеряясь в основном с пешеходными путями и внутренними проездами в микрорайонах.
- 1.4. Учреждения и предприятия, посещаемые в основном в пределах пешеходной доступности от различных мест нахождения людей, целесообразно размещать относительно равномерно (насколько позволяют конкретные условия) в пределах 1000 м друг от друга. Такое размещение указанных учреждений (независимо от границ планировочных элементов) обеспечивает необходимую доступность к ним различных контингентов населения, в связи с тем, что в дневное время городское население оказывается не только вблизи транспортных узлов, остановок и магистралей, но и внутри жилой застройки, в которой "оседает" до 60% всех жителей. На рис. 1 приведена ориентирующая сетка для размещения наиболее часто посещаемых культурно-бытовых учреждений и предприятий, передвижения к которым не связаны строго с границами планировочных элементов. Эта сетка представляет собой структуру пространственного размещения соответствующих учреждений и предприятий, как бы отделенную от границ планировочных элементов.
- **1.5.** Учреждения и предприятия, посещаемые периодически и эпизодически, целесообразно размещать на основе указанной оптимальной сетки, образуя, наряду с комплек-

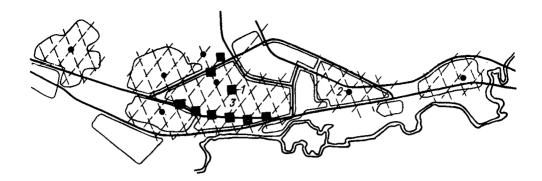
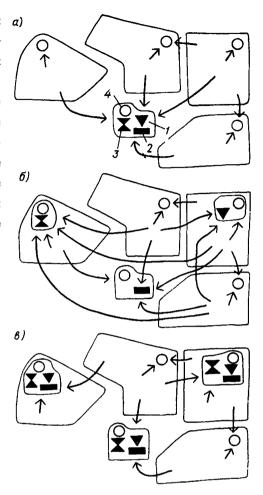


Рис. 1. Ориентирующая сетка взаимного размещения культурно-бытовых учреждений и предприятий, посещение которых не связано с границами планировочных элементов


1 — часто посещаемые учреждения, предприятия и комплексы обслуживания; 2 — комплексы совмещенных часто и периодически посещаемых учреждений и предприятий; 3 — комплексы совмещенных часто, периодически и эпизодически посещаемых учреждений и предприятий

сами частопосещаемых (повседневных) учреждений, совмещенные комплексы частопосещаемых и периодических учреждений, а также совмещенные комплексы частопосещаемых периодических и эпизодических учреждений.

- 1.6. Единичные, специализированные и уникальные учреждения и предприятия необходимо размещать с учетом обеспечения к ним целесообразной доступности из всех районов города. Их рекомендуется располагать не только в общегородском центре, но и в комплексах общественного обслуживания, размещаемых в различных планировочных зонах. Такое размещение увеличит число культурно-бытовых связей, повысит эффективность эксплуатации формируемых комплексов и "оттянет" от общегородского центра часть дневного населения, что приведет к улучшению градостроительных и эксплуатационных условий для размещения и функционирования различных объектов в центральной части города. На рис. 2 приведены схемы для различных вариантов размещения единичных специализированных и уникальных учреждений в городской застройке.
- 1.7. Основным структурообразующим элементом пространственного размещения объектов культурно-бытового обслуживания в системе городской застройки является общегородской центр. Понятие "центр" предполагает обязательную связь со всеми элементами, расположенными в пределах городской территории, на которые распространяются его функции.
- 1.8. Традиционные центры жилых и планировочных районов не являются центрами, проявляющими свои функции в границах этих планировочных элементов. Фактически это не центры, а комплексы учреждений и предприятий, обеспечивающие своим размещением необходимую доступность (10—25 мин) из различных мест городской территории, и, кроме

Рис. 2. Культурно-бытовые связи при различных вариантах размещения единичных специализированных и уникальных учрежлений и преплриятий обслуживания

1, 2, 3— единичные специализированные и уникальные объекты; 4— массовые культурно-бытовые объекты; а— размещение единичных объектов в одном комплексе на городской территории; б— размещение единичных объектов по одному в различных комплексах обслуживания; в— размещение по нескольку аналогов единичных объектов в каждом из нескольких комплексов обслуживания

того, гораздо большую доступность, при посещении указанных комплексов от близко расположенных мест приложения труда, исторических памятников, специализированных учреждений, куда многие приезжают из районов, расположенных в пределах часовой доступности. На рис. З приведены принципиальные схемы культурно- бытовых связей с традиционно называемыми центрами жилых и планировочных районов. Как видно из приведенных схем, каждое из учреждений и предприятий в рассматриваемых комплексах функционирует специфически, исходя из конкретных условий и взаимодействия с аналогичными учреждениями в окружающей сети.

1.9. Для наиболее эффективного использования транспортных коммуникаций, общественного транспорта и сокращения времени на передвижения к общественным зданиям целесообразно совмещать трудовые и культурно-бытовые передвижения. С этой целью учреждения районного и общегородского значения должны быть приближены к улицам и дорогам соответствующей категории. Так, вблизи магистральных улиц общегородского

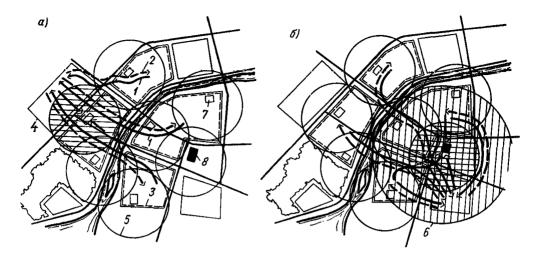


Рис. 3. Сопоставление реальных культурно-бытовых связей с радиусами зон обслуживания тралиционных центров на принципиальной схеме

a— сопоставление с зоной обслуживания жилого района; b— сопоставление с зонами обслуживания совмещенного центра жилого и планировочного районов; b0— прямые и обратные трудовые и культурно-бытовые связи; b0— границы жилых районов; b0— границы производственных территорий; b0— границы зон обслуживания жилого района; b0— граница зоны обслуживания планировочного района; b0— центры жилых районов; b0— центр планировочного района

значения следует размещать общегородские общественные здания, вблизи магистральных улиц районного значения — совмещенные комплексы периодического и повседневного обслуживания и вдоль жилых улиц — преимущественно комплексы частопосещаемых (повседневных) учреждений и предприятий.

- 1.10. Все культурно-бытовые связи, определяющие структуру размещения и типы общественных зданий в системе элементов городской застройки, необходимо намечать между этими зданиями (или их комплексами) и зонами нахождения населения (рис. 4). Эти зоны намечаются для двух основных ситуаций распределения дневного населения на городской территории:
- в рабочее время, когда население распределяется между всеми элементами городской застройки и, прежде всего, между местами жительства и приложения труда;
- в послерабочее время, когда население распределяется в жилой и общественной застройке.
- **1.11.** Границы зон нахождения населения целесообразно принимать таким образом, чтобы они охватывали три принципиально различных типа городских территорий (рис. 5.):

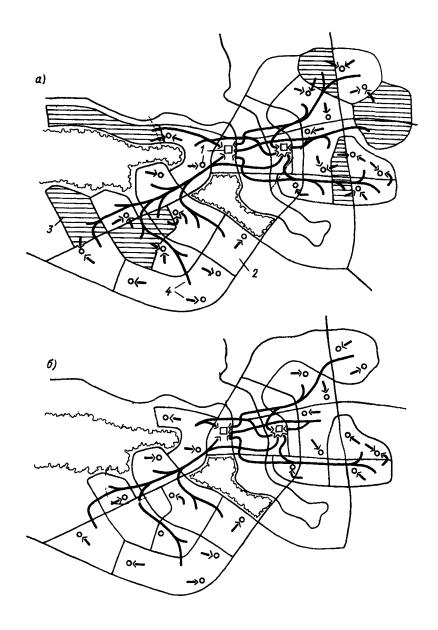


Рис. 4. Культурно-бытовые связи в рабочее и внерабочее время

a— для ситуации распределения людей в рабочее время; b— для ситуации распределения людей во внерабочее время; b— комплексы обслуживания; b— преобладающая жилая застройка; b— производственные и складские территории; b— культурно-бытовые связи

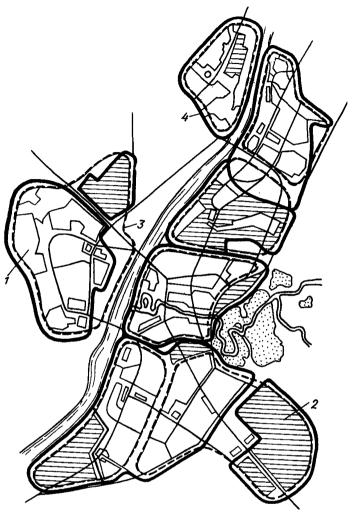


Рис. 5. Определение границ зон нахождения населения с учетом специфики городской застройки

1— территории, занятые преимущественно жилой застройкой; 2— территории, занятые производственной застройкой; 3— границы планировочных районов; 4— границы зон нахождения населения

преимущественно жилая застройка с отдельными местами приложения труда, с небольшой численностью работающих (до 1—3 тыс. чел.);

преимущественно производственная застройка (промышленные узлы, производственные зоны);

смешанная застройка, сочетающая жилые массивы и сравнительно небольшие производственные узлы и зоны.

1.12. Посещаемость различных учреждений и предприятий во многом зависит от дальности передвижений к ним. На основании исследований, произведенных в различных городах нашей страны, были, получены коэффициенты посещаемости в зависимости от дальности передвижений, выраженной в минутах (табл. 1), которые характеризуют рациональность культурно-бытовых связей.

Таблица 1

Шифр вида обслу-	Учреждения и предприятия	Коэффициенты посещаемости b к симости от дальности передвиже затратах времени, мин				
жива- ния k		до 10	10-25	25-35	35-45	45 и св.
	Магазины:			<u> </u>	·	
k 1	продовольственные	1	0,3	0,2	0,1	0,1
k ₂	непродовольственные	1	0,8	0,7	0,6	0,4
k ₂ k ₃	Предприятия общественного питания	1	0,6	0,3	0,2	0,1
k ₄	Рынки	1	1	0,6	0,3	0,2
k ₅	Предприятия бытового обслуживания	1	0,8	0,6	0,4	0,3
	Административно-обществен-					
	ные и хозяйственные учреж-					
	дения:					
^k 6	городские	1	1	0,8	0,6	0,4
k ₇	районные	1	1	0,6	0,4	0,2
k ₈	Предприятия связи	1	1	0,6	0,4	0,2
k _o	Театры, цирки	1	1	0,8	0,6	0,4
k 10	Клубы	1	0,9	0,8	0,6	0,2
k 11	Библиотеки	1	0,8	0,7	0,6	0,4
k ₁₂	Выставки (выставочные залы)	1	1	0,8	0,6	0,4
k ₁₃	Кинотеатры	1	1	0,8	0,4	0,2
k 14	Аптеки	1	0,6	0,4	0,2	0,1
k ₁₅	Парки, сады, спортивные сооружения	1	0,8	0,6	0,4	0,3

Рис. 6. Принципивальное резделение зон размещения культурно-бытовых учреждений и предприятий в зависимости от дальности перешвижений к ним

1 — границы зоны 10-25-минутной доступности, в которой размещаются массовые учреждения и предприятия; 2 — граница зоны 5-минутной пешеходной доступности; 3 — учреждения и предприятия периодического посещения; 4 — частопосещаемые учреждения и предприятия обслуживания

- 1.13. Коэффициенты, приведенные в табл. 1, определяют долю всех передвижений, которую могут взять на себя учреждения или предприятия рассматриваемого профиля, расположенные на определенном расстоянии от обслуживаемого населения. Таким образом, доля передвижений, приходящихся на культурно-бытовые учреждения и предприятия, размещаемые в жилой застройке в пределах пешеходной доступности (500 м), определяется как остаток от всех культурно-бытовых передвижений в год, приходящихся на одного городского жителя, за вычетом доли, размещаемой в районной и общегородской сети. На рис. 6 показано принципиальное разделение зон размещения культурно-бытовых учреждений и предприятий в зависимости от дальности передвижений к ним.
- **1.14.** На основании коэффициентов b_k , а также рис. 6, в табл. 2 приведены соотношения чисел передвижений к учреждениям и предприятиям, размещаемым в комплексах обслуживания за пределами 10-минутной доступности, а также в пределах 10-минутной доступности.
- 1.15. Образование культурно-бытовых связей практически зависит от двух взаимодействующих показателей: от потребности в определенной частоте пользования учреждениями и предприятиями в рассматриваемых комплексах обслуживания (см. табл. 2) и от дальности передвижений к ним (см. табл. 1)
- 1.16. В процессе функционирования и развития уже сложившихся городов возникает необходимость как в реорганизации существующих скоплений общественных зданий, так и в формировании новых комплексов обслуживания. Реорганизацию и формирование необходимо производить на основе определения культурно-бытовых связей с различными элементами городской застройки и расчета численности населения, тяготеющего к учреждениям и предприятиям в указанных скоплениях и комплексах на расчетный срок развития рассматриваемого города и для промежуточных этапов.
 - 1.17. Исходя из специфики пространственных культурно-бытовых связей и в зависимос-

Таблица 2

Шифр	Учреждения и предприятия	Коэффициент даль-	i i	передвиж	ений на
вида		ности передвижений	1 чел.	в год	
обслу-		к объектам за преде-	BCCTO	за преде-	в преде-
жива-		лами микрорайонов		лами	лах
ния k				10-ми-	10-ми-
				нутной	нутной
				доступ-	доступ-
				ности	ности
	Магазины:			<u> </u>	
k ₁	продовольственные	0,3	320	96	224
k ₂	непродовольственные	0,8	66	52,8	13,2
k ₃	Предприятия общественного	0,6	170	102	68
3	питания				
k ₄	Рынки	1	15	15	-
k ₅	Предприятия бытового	0,8	28	22,4	5,6
'n	обслуживания				
	Административно-обществен-				
	ные и хозяйственные учреж-				
	дения:				
k ₆	городские	1	20	20	
k,	районные	1	18	18	-
k _o	Предприятия связи	1	11	11	-
k ₉	Театры, цирки	1	7	7	-
k 10	Клубы	0,9	14	12,7	1,3
k 11	Библиотеки	0,8	11	8,8	2,2
k 12	Выставки (выставочные	1	13	13	
	залы)				
k 13	Кинотеатры	1	20	20	
K 14	Аптеки	0,6	4	2,4	1,6
k ₁₅	Парки, сады, спортивные	0,8	12	9,6	2,4
10	сооружения				
	Итого		729	410,7	318,3

ти от конкретного размещения среди элементов городской застройки предлагается следующая классификация комплексов культурно-бытового обслуживания:

многосвязевые регионально-городские комплексы (преимущественно общегородской центр, подцентр и комплексы у главных въездов в город возле крупных транспортных узлов);

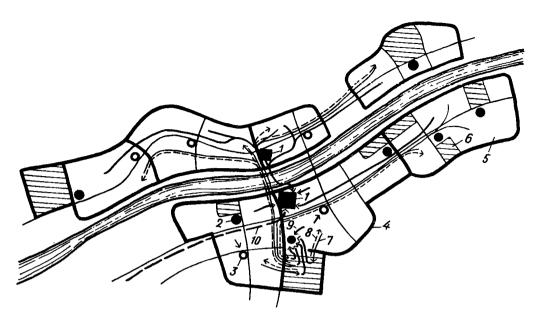


Рис. 7. Система пространственно-связевых комплексов в городской застройке

1 — многосвязевые регионально-городские комплексы;
 2 — многосвязевые городские комплексы;
 3 — покально-связевые комплексы;
 4 — границы зон нахождения населения;
 5 — преобладающая жилая застройка;
 6 — производственные и складские территории;
 7 — трудовые связи с местами приложения труда;
 8 — обратные связи;
 9 — культурно-бытовые связи;
 10 — региональные связи

многосвязевые городские комплексы, размещаемые возле мест приложений труда и транспортных узлов городского значения;

локально-связевые комплексы, размещаемые у магистралей районного значения и посещаемые в основном населением прилегающей жилой застройки.

Пример формирования системы указанных комплексов и культурно-бытовых связей показан на принципиальной схеме города на рис. 7.

2. МОДЕЛЬ ПЕРЕРАСПРЕДЕЛЕНИЯ И РАСЧЕТА ЧИСЛЕННОСТИ ТЯГОТЕЮМЕГО К ОБСЛУЖИВАНИЮ НАСЕЛЕНИЯ

2.1. Распределение расчетной численности населения, тяготеющего к обслуживанию различными культурно-бытовыми учреждениями и предприятиями, основано на предпосылке равномерного процесса посещения этих объектов без учета влияния коньюнктурных пиковых нагрузок в связи с продажей деффицитных товаров, показом популярных фильмов, гастролями популярных артистов и т. п. Такая предпосылка является правомерной для задач градостроительного и объемно-планировочного проектирования.

Если учитывать коньюнктурные нагрузки, то придется строить гигантские объекты культурно-бытового обслуживания, которые будут загружены только несколько раз в году, поэтому для коньюнктурных нагрузок применяются на практике более гибкие методы, а именно используются большие помещения дворцов спорта, административных зданий и т.п.

- 2.2. Численность тяготеющего к обслуживанию населения принципиально отличается от числа посетителей, непосредственно пользующихся услугами различных культурно-бытовых учреждений и предприятий. Это различие определяется спецификой применяемого для расчета нормативного способа, который предусматривает перемножение нормы на расчетную численность населения. Применение действующих норм обеспечивает практическую возможность формирования комплексов учреждений и предприятий обслуживания на основании культурно-бытовых связей. Причем, сохраняя для всего города общую суммарную вместимость культурно-бытовых учреждений и предприятий любого рассматриваемого вида обслуживания в соответствии с действующими нормами, настоящая модель обеспечивает учет специфики распределения населения между этими учреждениями в соответствии с конкретными условиями их функционирования.
- 2.3. Основу разработанной модели составляет математическое описание распределения городского и приезжего населения между культурно-бытовыми учреждениями и предприятиями, которое производится из расчетных зон его нахождения. Границы расчетных зон намечаются на схеме города и охватывают территории различной величины, в зависимости от необходимой точности расчета и характера застройки (см. пп. 1.10 и 1.11).
- 2.4. Режим функционирования объектов производственной, научной и учебной деятельности, жилых зданий, учреждений культурно-бытового обслуживания, отдыха и спорта, инженерных и транспортных сооружений, а также парков, садов и других элементов городской застройки вызывает распределение населения, различное для различных временных "срезов". При этом население в пределах городской территории в любой момент дневного времени фактически оказывается как в учреждениях и предприятиях культурно-бытового назначения, так и в других местах (местах приложения труда, жительства и т. п.).

Разработанной моделью предусматривается не просто фиксирование единовременного распределения населения между всеми элементами городской застройки, а выделение первоначальных "стартовых" расчетных зон нахождения людей, откуда они направляются к объектам обслуживания, которые являются местами привлекательности.

- 2.5. Чтобы учесть вероятность посещений культурно-бытовых учреждений или предприятий какого-либо вида обслуживания одними и теми же людьми из различных мест нахождения, в которых они оказываются в течение суток, необходимо составить схемы распределения населения на всей городской территории в пределах расчетных зон их первоначального нахождения по отношению к рассматриваемым объектам обслуживания. При этом достаточно зафиксировать две основные исходные ситуации распределения численности населения в расчетных зонах его нахождения на городской территории.
- **2.6.** Первая основная исходная ситуация f_1 отображается на схеме, охватывающей всю городскую территорию, на которой в контурах расчетных зон фиксируется численность

находящегося там в дневное время населения, включающая трудозанятых (в том числе учащихся) и не трудозанятых (в том числе работающих во 2-ю и 3-ю смены) людей, а также командированных и приехавших из агломерации с различными целями. При этом учитывается население, выехавшее из города в отпуск, в командировку и по другим целям (ориентировочно, в процентах и тысячах человек).

- 2.7. Вторая основная исходная ситуация f 2 отображается на схеме, охватывающей только жилые комплексы, центральную часть города и другие места общественного назначения, в которых фиксируется численность людей, находящихся в пределах расчетных зон в послерабочее время.
- 2.8. Нормативный способ расчета предполагает перемножение нормы на численность обслуживаемого постоянного населения в тысячах человек. При этом предполагается приблизительно одинаковый состав постоянного населения на всей территории каждого из планировочных элементов и даже всего города. В действительности, в дневное время происходит перераспределение различных групп населения по городской территории. Большая часть самодеятельного населения перемещается к местам приложения труда, учебы, к административным зданиям и т. п. На территориях одних расчетных зон нахождения населения происходит дополнительный приток людей, а на других - отток, и там остается преимущественно несамодеятельное население. Поэтому, чтобы правомерно применить действующие нормы, необходимо привести фактическую численность находящегося в расчетных зонах людей (для каждой из исходных ситуаций f_1 и f_2) к численности идентичного по потребностям постоянного населения города, имеющего усредненный демографический и социально-профессиональный состав, и затем распределять эту численность между различными объектами обслуживания на основании разработанной математической модели. Для такого приведения можно пользоваться формулой, предложенной Я.В. Косицким (с заменой некоторых обозначений)

$$H_{if} = Q_i \left(\stackrel{+}{\cdot} \right) K \Pi_{if} , \qquad (1)$$

где $\mathbf{H}_{\mathbf{j}\mathbf{f}}$ — число постоянных жителей, соответствующих по своей суммарной потребности в культурно-бытовом обслуживании числу жителей, находящихся в расчетной зоне \mathbf{j} , намеченной для одной из ситуаций \mathbf{f} ; $\mathbf{Q}_{\mathbf{j}}$ — число людей, постоянно проживающих на территории рассматриваемой расчетной зоны; $\mathbf{\Pi}_{\mathbf{j}\mathbf{f}}$ — приток или убыль населения в дневное время по сравнению с числом постоянно проживающих людей на территории рассматриваемой расчетной зоны \mathbf{j} в одной из ситуаций \mathbf{f} ; \mathbf{K} — коэффициент приведения численности прибывающего или выезжающего в дневное время населения \mathbf{k} численности аналогичного по потребностям постоянного населения, имеющего усредненный социально-демографический состав.

2.9. Приток или убыль населения в дневное время $\Pi_{
m if}$ по сравнению с числом постоянно

проживающих людей Q_j на территории рассматриваемой расчетной зоны j в одной из ситуаций f определяется по формуле

$$\Pi_{jf} = \Pi_{jf} - Q_{j} , \qquad (2)$$

где Π_{if} — число людей, зафиксированных в рассматриваемой расчетной зоне j в ситуации f.

- 2.10. Все параметры кроме коэффициента К в формулах (1) и (2) принимаются в соответствии с материалами генерального плана развития любого рассматриваемого города, а указанный коэффициент в соответствии с долей, которую занимает самостоятельное население по отношению ко всему населению города, а именно К = 100/60 = 1,66 ≈ 1,7.
- **2.11.** После того, как во всех расчетных зонах на схеме какого-либо рассматриваемого города для двух основных исходных ситуаций определена численность приведенного к постоянному населения, необходимо распределить его между различными культурно-бытовыми учреждениями и предприятиями.

В соответствии со спецификой принятого нормативного способа расчета многие факторы, определяющие посещаемость различных культурно-бытовых учреждений и предприятий, учитываются как через действующую норму, так и через величину численности тяготеющего к обслуживанию населения. При этом нормой учитывается потребность в определенной частоте и неравномерность пользования различными видами услуг.

Распределение численности приведенного к постоянному населения из расчетных зон его нахождения в ситуациях f_1 и f_2 производится в зависимости от частоты пользования различными видами услуг в течение года, которая используется здесь в виде распределительных коэффициентов потребности в посещении, выражающих функциональную привлекательность различных учреждений и предприятий, а также в зависимости от дальности передвижений к ним, комплексности их размещения, вероятности посещения в каждой из двух исходных ситуаций и от характера распределения посещаемости между рассредоточенными в пределах пешеходной доступности объектами и между комплексами обслуживания, расположенными за пределами пешеходной доступности.

2.12. Коэффициенты потребности в передвижениях а к учреждениям или предприятиям какого-либо вида обслуживания определяются по формуле

$$a_{k} = n_{k}/S_{(ODIII)} , \qquad (3)$$

где n_k — число культурно-бытовых передвижений на 1 чел. в год к учреждениям или предприятиям какого-либо вида обслуживания k, размещаемых в комплексах, расположенных за пределами 10-минутной доступности; $S_{(общ)}$ — число всех культурно-бытовых передвижений, приходящихся на 1 чел. в год.

2.13. Параметр n_k принимается по табл. 2, а $S_{(\text{общ})}$ определяется из расчета приблизительно 3 передвижения в сутки на 1 чел. Принимая 366 дней в году получаем: 366 х 3 = $= 1098 \approx 1100$ всех культурно-бытовых передвижений на 1 чел. в год. В табл. 3 приведены величины коэффициентов потребности в передвижениях к рассматриваемым видам куль-

Шифр вида обслужива- ния k	Учреждения и предприятия	Коэффициенты потребности в передвижениях а _к
	Магазины:	
k,	продовольственные	0,087
^k 1 ^k 2 ^k 3	непродовольственные	0,048
k _a	Предприятия общественного	0,093
3	питания	
k,	Рынки	0,014
^k 4 ^k 5	Предприятия бытового обслу-	0,020
3	живания	
	Административно-обществен-	
	ные и хозяйственные учреж-	
	дения:	
's ₆	городские	0,018
k ₇	районные	0,016
kg.	Предприятия связи	0,010
^k 6 ^k 7 ^k 8 ^k 9	Театры, цирки	0,006
S ₁₀	Клубы	0,012
k 11	Библиотеки	0,008
12	Выставочные залы	0,012
13	Кинотеатры	0,018
k ₁₄	Аптеки	0,022
k 15	Парки, сады, скверы, спортивные	0,009
	сооружения	

турно-бытовых учреждений и предприятий, размещаемым в комплексах обслуживания за пределами 10-минутной доступности.

2.14. Коэффициенты потребности в передвижениях к учреждениям и предприятиям различных видов обслуживания являются одними из основных параметров, определяющих точность расчета. Эти коэффициенты в данном случае дифференцированы укрупненно только между видами обслуживания (магазинами продовольственными и непродовольственными, предприятиями общественного питания и т. п.). Однако возможна их дальнейшая дифференциация в зависимости от частоты посещений различных разновидностей учреждений внутри каждого из видов обслуживания. Например, не вообще к магазинам непродовольственных товаров, а отдельно к магазинам и товарным группам "Ткани", "Обувь", "Галантерея". Не вообще к предприятиям общественного питания, а отдельно к столовым,

ресторанам и т. п. Для более детальной дифференциации коэффициентов потребности в передвижениях необходимо провести дополнительные исследования частоты посещений различных разновидностей учреждений и предприятий, относящихся к каждому из видов обслуживания.

Укрупненная дифференциация имеет свои методические преимущества. Проектировщик, получивший в результате последующих расчетов ту или иную вместимость учреждений или предприятий какого-либо вида обслуживания, в зависимости от величины этой вместимости, может определять конкретные разновидности этих учреждений. При этом большая вместимость позволит организовать учреждения более высокого уровня обслуживания.

2.15. Для всех w культурно-бытовых учреждений и предприятий, размещаемых в каждом рассматриваемом комплексе і,определяются суммарные коэффициенты потребности в передвижениях а, по формуле:

$$a_{i} = \sum_{k=1}^{W} a_{ki} . \tag{4}$$

2.16. Коэффициенты посещаемости различных учреждений и предприятий в зависимости от дальности передвижений b_k , приведенные в табл. 1, для упрощения и сокращения объема исходных данных, а также вычислений и машинного времени при расчете на ЭВМ, необходимо привести к средним величинам b_i в соответствии с частотой посещения и количест-

Таблица 4

Шифр вида обслужива-	1						
ния к		в год к комп- пексам за пре- делами 10-ми- нутной доступ- ности	до 10	10-25	25-35	35-45	45 и более
	Магазины:						
k ₁	продовольствен ные	- 96	1	0,3	0,2	0,1	0,1
k ₂	непродовольст- венные	52,8	1	0,8	0,7	0,6	0,4
^k 3	Предприятия общественного питания	102	1	0,6	0,3	0,2	0,1

Продолжение табл. 4

Шифр вида обслужива- ния k	Учреждения и предприятия	Число передви- жений на 1 чел. в год к комп-	i '	Коэффициенты дальности передвижений при затратах времени, мин				
A KNH		в год к комп- лексам за пре- делами 10-ми- нутной доступ- ности	до 10	10-25	25-35	35-45	45 и более	
k 4 k 5	Рынки Предприятия бы- тового обслужи- вания Административно-	15 22,4	1 1	1 0,8	0,6 0,6	0,3 0,4	0,2	
	общественные и хозяйственные учреждения:							
^k 6	городские	20	1	1	0,8	0,6	0,4	
^k 7	районные	18	1	1	0,6	0,4	0,2	
^c 8	Предприятия связи	11	1	1	0,6	0,4	0,2	
و۲	Театры, цирки	7	1	1	0,8	0,6	0,4	
10	Клубы	12,7	1	0,9	0,8	0,6	0,2	
⁵ 11	Библиотеки	8,8	1	0,8	0,7	0,6	0,4	
^k 12	Выставки (выставочные залы)	13	1	1	0,8	0,6	0,4	
^k 13	Кинотеатры	20	1	1	0,8	0,4	0,2	
k 14	Аптеки	2,4	1	0,6	0,4	0,2	0,1	
k 15	Парки, сады, спорт сооружения	- 9,6	1	0,8	0,6	0,4	0,3	
	Итого	410,7			-	-	_	
	Средние величинь коэффициента b ķ	I	1	0,7	0,5	0,3	0,2	

коэффициента b k для комплекса из 15 видов учреждений и предприятий b...

вом входящих в рассматриваемые комплексы учреждений и предприятий. Такое приведение можно произвести по формуле

$$b_{ij} = \sum_{k=1}^{W} b_k n_k / \sum_{k=1}^{W} n_k .$$
 (5)

В табл. 4 в качестве примера приведены средние величины коэффициентов b.,, вычисленные по формуле (4) для комплекса, который включает 15 видов учреждений и предприятий обслуживания.

2.17. Каждый человек, пользуясь городским общественным транспортом, может практически посетить весь набор учреждений и предприятий, размещаемых во всех комплексах обслуживания за пределами пешеходной доступности. Если каких-либо учреждений нет в одном комплексе, то можно посетить эти учреждения в другом. Поэтому по отношению к населению, находящемуся в определенной ситуации (f₁ или f₂) в пределах рассматриваемой расчетной зоны, можно принять предпосылку, что оно, в определенной пропорции, с одной стороны, тяготеет к объектам культурно- бытового обслуживания в пределах пешеходной доступности, к местам отдыха и досуга, а с другой стороны — ко всем учреждениям и предприятиям, размещаемым в комплексах обслуживания за пределами пешеходной доступности, для которых доля тяготения V определяется по формуле:

$$V = \sum_{k=1}^{r} n_k / S$$

$$k=1 \qquad k \qquad ob \quad (6)$$

где г — число всех видов культурно-бытовых учреждений и предприятий, размещаемых в комплексах обслуживания за пределами пешеходной доступности.

Принимая величины параметров для формулы (6) по табл. 2 и п. 2.13, получаем V = 410.7/1100 = 0.373.

- **2.18.** Вероятность посещения населением культурно-бытовых учреждений и предприятий, размещаемых в комплексах обслуживания за пределами пешеходной доступности, для исходных ситуаций нахождения людей \mathbf{f}_1 и \mathbf{f}_2 выражается коэффициентом $\mathbf{C}_{\mathbf{f}}$. Периодический и эпизодический характер посещения указанных комплексов позволяет представить эти посещения равновероятностными для обеих исходных ситуаций. Тогда, принимая суммарную вероятность посещения рассматриваемых комплексов из расчетных зон нахождения населения в обеих ситуациях за 1, можно для каждой из них принять $\mathbf{C}_{\mathbf{f}} = \mathbf{0}$,5.
- 2.19. Распределение численности приведенного к постоянному населения из расчетных зон его нахождения производится на основе предпосылки, предусматривающей избирательность передвижения человека в каком-либо одном направлении с одной или несколькими целями, в зависимости от количества видов услуг в избранных объектах или комплексах

обслуживания. При этом разные люди могут направляться в разное время к месту обслуживания из исходной расчетной зоны в определенной ситуации их нахождения ($\mathbf{f_1}$ или $\mathbf{f_2}$).

2.20. Учитывая конкретный состав учреждений и предприятий в различных комплексах обслуживания, дальность их размещения по отношению к населению, находящемуся на территориях расчетных зон, и степень целесообразности передвижений к более удаленным комплексам при наличии близкорасположенных, составляются схемы культурно-бытовых связей населения в пределах всей городской территории для двух исходных ситуаций распределения населения f_1 и f_2 . Примеры составления таких схем показаны на рис. 8 и 9.

Рис. 8. Расчетимя сжема распределения культурно-бытовых связей для сихуации накождения населения \mathbf{f}_1

a — границы расчетных зон; δ — комплексы обслуживания

Рис. 9. Расчетная сжема распределения культурно-бытовых связей для сигуации накождения населения \mathbf{f}_2

2.21. В соответствии с принятыми схемами культурно-бытовых связей производится определение суммарной численности первоначально тяготеющего населения T_{ii} , избирательно посещающего учреждения и предприятия в каком-либо комплексе обслуживания их связанных с ним расчетных зон нахождения людей в ситуации f по формуле

$$T_{if} = \sum_{j=1}^{q} \frac{a_{i}^{b}_{ijf}^{H}_{if}^{H}_{if}^{VC}_{f}}{\sum_{i=1}^{p} a_{i}^{b}_{ijf}},$$
(7)

где \mathbf{a}_i — суммарный коэффициент потребности в передвижениях к рассматриваемому комплексу обслуживания $\mathbf{i}; \, \mathbf{b}_{iif}$ — коэффициент дальности размещения рассматриваемого комплексу обслуживания $\mathbf{i}; \, \mathbf{b}_{iif}$

лекса обслуживания і от расчетной зоны нахождения населения ј для одной из основных исходных ситуаций f; H_{if} — численность населения, находящегося на территории расчетной зоны j, для исходной ситуации f; приведения к численности идентичности по потребностям постоянного населения, имеющего усредненный социально-демографический состав; V — доля тяготения к учреждениям и предприятиям, размещаемым в комплексах обслуживания за пределами пешеходной доступности; C_f — коэффициент вероятности периодических и эпизодических посещений культурно-бытовых учреждений и предприятий из исходной ситуации f; p — число комплексов обслуживания; q — число расчетных зон.

2.22. Получив суммарную численность первоначально тяготеющего населения T_{if} от расчетных зон нахождения людей в обеих исходных ситуациях f_1 и f_2 ко всем учреждениям и предприятиям, размещаемым в каком-либо комплексе i, необходимо перейти к перераспределению этой численности. Такое перераспределение производится в соответствии с вероятностью попутных и других передвижений, совершаемых уже не из расчетных зон нахождения людей, а от мест расположения учреждений и предприятий каждого вида обслуживания, которые в этом случае рассматриваются как новые места нахождения населения Например люди, посетившие сначала магазин непродовольственных товаров, могут направиться в рядом расположенный кинотеатр, в кафе или вообще уехать в другой район города (к месту жительства, в общегородской центр, в зону отдыха и т. п.). На рис. 10 приведена принципиальная схема перераспределения тяготеющего к обслуживанию населения с учетом попутных посещений. Исходя из приведенной схемы, коэффициент вероятности попутных посещений $\mathbf{l}_{\mathbf{r}}$ может быть получен по формуле

$$l_k = n_k / [n_k + (S_{(05 \text{III})} - n_k) b_{k \text{ cp}}],$$
 (8)

где b — усредненный коэффициент дальности передвижений к учреждениям или предприятиям какого-либо вида обслуживания k, расположенным за пределами рассматриваемого комплекса i.

В табл. 5 приведены величины коэффициентов l_{μ} , рассчитанные по формуле (8).

2.23. Общая расчетная численность населения, тяготеющего к обслуживанию каким-либо учреждением или предприятием в рассматриваемом комплексе і, складывается из численностей населения, тяготеющего первоначально от исходных зон его нахождения непосредственно к рассматриваемому учреждению, населения, попутно посещающего это учреждение, и населения, тяготеющего к нему из всех остальных мест на городской территории, куда направляются люди не посетившие попутно расположенное учреждение. Такое суммирование всех составляющих городского населения и последующее выделение доли, которую берет на себя учреждение конкретного вида обслуживания к в конкретном комплексе і связано со спецификой нормативного способа расчета, при котором нормой учитываются непосредственные посетители учреждений, но она относится на 1000 чел. всего обслуживаемого населения.

Рис. 10. Принципиальная скема перераспределения населения, тяготеющего к учреждениям в комплексе обслуживания

1, 2, 3, 4 — учреждения и предприятия различных видов обслуживания; 5 — население, тяготеющее к рассматриваемому учреждению непосредственно от расчетных зон нахождения людей; 6 — население, тяготеющее попутно от совместно расположенных учреждений и предприятий; 7 — население не совершающее попутных посещений

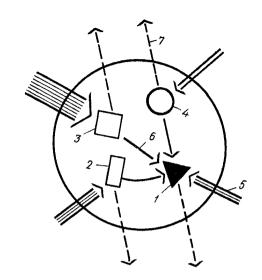


Таблица 5

Шифр вида	Учреждения и предприятия	Коэффициенты вероятнос-
обслужива- ния k		ти попутных посещений L
	Магазины:	
k ₁	продовольственные	0,323
	непродовольственные	0,067
^k 2 ^k 3 ^k 4	Предприятия общественного питания	0,254
k _A	Рынки	0,022
k ₅	Предприятия бытового обслуживания	0,033
3	Административно-общественные и	
	хозяйственные учреждения:	
k _e	городские	0,023
k ₇	районные	0,027
k,	Предприятия связи	0,016
k _o	Театры, цирки	0,008
^k 6 ^k 7 ^k 8 ^k 9	Клубы	0,014
k ₁₁	Библиотеки	0,011
k 12	Выставки (выставочные залы)	0,015
k ₁₃	Кинотеатры	0,023
k 14	Аптеки	0,005
k ₁₅	Парки, сады, спортивные сооружения	0,014

2.24. Численность всего населения h_{kif} , первоначально тяготеющего к учреждению какого-либо вида обслуживания k в рассматриваемом комплексе i от расчетных зон нахождения людей в каждой из основных исходных ситуаций f_1 и f_2 определяется по формуле

$$h_{kif} = T_{if} - \frac{a_k}{a_i} . (9)$$

2.25. Численность населения P_{ii} , тяготеющего в какой-либо исходной ситуации f_1 или f_2 к учреждению рассматриваемого вида обслуживания k, попутно от других учреждений и предприятий, размещаемых в комплексе i, определяется по формуле:

$$P_{if} = (T_{if} - T_{if} - \frac{a_k}{a_i}) t_k = T_{if} t_k (1 - \frac{a_k}{a_i}).$$
 (10)

2.26. Общая численность населения B_{kif} , тяготеющего к рассматриваемому учреждению или предприятию k непосредственно из расчетных зон исходной ситуации f и попутно от рядом расположенных учреждений в комплексе i определяется по формуле

$$B_{kif} = T_{if} - \frac{a_k}{a_i} + T_{if} l_k (1 - \frac{a_k}{a_i}) = T_{if} [(1 - l_k) - \frac{a_k}{a_i} + l_k]$$
 (11)

2.27. Численность всего населения H_k , находящегося в пределах городской территории в обеих исходных ситуациях f_1 и f_2 и тяготеющего к рассматриваемому учреждению или предприятию k, в зависимости от соотношения количества передвижений к учреждениям и комплексам обслуживания за пределами и в пределах 10-минутной доступности, характерного для рассматриваемого вида обслуживания, может быть получена по формуле

$$H_{k} = \frac{n_{k} \sum_{f=1}^{2} \sum_{j=1}^{q_{k}} H_{jf} C_{f}}{n_{k} + m_{k}}, \qquad (12)$$

где m_k — общее число передвижений на 1 чел. в год κ учреждениям или предприятиям рассматриваемого вида обслуживания k, рассредоточенным в городской застройке в пределах 10-минутной доступности.

2.28. Численность населения \mathbf{F}_{1} , оставшегося необслуженным в ситуации \mathbf{f}_{1} учреждениями и предприятиями рассматриваемого вида \mathbf{k} , может быть выражена формулой:

$$F_{f_{2}} = H_{k} - \sum_{i=1}^{p} B_{kif} = \frac{\prod_{k=1}^{2} \sum_{j=1}^{q} H_{jf} C_{f}}{\prod_{k=1}^{q} H_{k} C_{f}} - \sum_{i=1}^{p} T_{if_{1}} [(1-1_{k}) \frac{A_{k}}{A_{i}} + 1_{k}].$$
 (13)

2.29. Население F_{f_2} , оставшееся необслуженным в ситуации f_1 , в результате многократного перераспределения распределяется в ситуации f_2 пропорционально общей численности населения B_{kif_2} , тяготеющего к рассматриваемому учреждению или предприятию к непосредственно из расчетных зон исходной ситуации f_2 и попутно от рядом расположенных учреждений в комплексе f_2 в общая численность населения является показателем степени притягательности конкретного учреждения в зависимости от состава окружающих его учреждений и предприятий в рассматриваемом комплексе f_2 в также — от размещения этого комплекса по отношению к остальным объектам культурно-бытового обслуживания и расчетным зонам в ситуации f_2 . Таким образом, в ситуации f_2 рассматриваемым учреждением или предприятием обслуживания доля f_3 оставшегося необслуженным в ситуации f_3 , которая определяется по формуле

$$Z_{kif_{2}} = (H_{k} - \sum_{i=1}^{p} B_{kif_{1}}) \frac{B_{kif_{2}}}{\sum_{i=1}^{p} B_{kif_{2}}} = \left\{ \frac{\sum_{i=1}^{q} \sum_{j=1}^{q} H_{jf} C_{f}}{\sum_{i=1}^{n} H_{jf} C_{f}} - \sum_{i=1}^{p} T_{if_{1}} [(1 - t_{k}) \frac{a_{k}}{a_{i}} + t_{k}] + t_{k}] \right\} \frac{T_{if_{2}} [(1 - t_{k}) \frac{a_{k}}{a_{i}} + t_{k}]}{\sum_{i=1}^{p} T_{if_{2}} [(1 - t_{k}) \frac{a_{k}}{a_{i}} + t_{k}]}.$$

$$(14)$$

2.30. Суммарная численность приведенного населения T_{ki} , тяготеющего к обслуживанию конкретным культурно-бытовым учреждениям или предприятиям k, размещаемым в комплексе i, определяется по формуле

$$T_{ki} = B_{kif_{1}} + (H_{k} - \sum_{i=1}^{p} B_{kif_{1}}) \frac{B_{kif_{2}}}{\sum_{i=1}^{p} B_{kif_{2}}} = T_{if_{1}} [(1 - t_{k}) - \frac{a_{k}}{a_{i}} + t_{k}] + \left(\frac{n_{k} - \sum_{i=1}^{p} \frac{Q}{j}}{\sum_{i=1}^{p} H_{jf}} C_{f} - \sum_{i=1}^{p} T_{if_{1}} [(1 - t_{k}) - \frac{a_{k}}{a_{i}} + t_{k}] \right) \frac{T_{if_{2}} [(1 - t_{k}) - \frac{a_{k}}{a_{i}} + t_{k}]}{\sum_{i=1}^{p} T_{if_{2}} [(1 - t_{k}) - \frac{a_{k}}{a_{i}} + t_{k}]}, (15)$$

2.31. Вместимость $\mathbf{E}_{\mathbf{k}i}$ каждого из учреждений или предприятий какого-либо вида обслуживания \mathbf{k} в рассматриваемом комплексе \mathbf{i} определяется по формуле :

$$\mathbf{E}_{ki} = \mathbf{N}_{\text{obm}} \mathbf{T}_{ki}, \tag{16}$$

где N — расчетная суммарная общегородская норма.

3, ПРИМЕНЕНИЕ РАСЧЕТА ПРОСТРАНСТВЕННО-СВЯЗЕВОЙ СИСТЕМЫ РАЗМЕЩЕНИЯ УЧРЕЖДЕНИЙ И ПРЕДПРИЯТИЙ ОБМЕСТВЕННОГО ОБСЛУЖИВАНИЯ

3.1 Расчет перераспределения численности населения, тяготеющего к учреждениям и предприятиям общественного обслуживания, может быть использован для расчета: численности приведенного к постоянному населения, тяготеющего к учреждениям и предприятиям общественного обслуживания, для определения их вместимости на основании конкретных культурно-бытовых связей и действующих норм;

вероятной численности людей, непосредственно посещающих культурно-бытовые учреждения и предприятия, необходимой для определения ориентировочной площади, которую могут занять рассматриваемые объекты общественного обслуживания, площади зеленых насаждений общего пользования, а также площадей для стоянок автомобилей и для транспортных расчетов при определении пассажиропотоков непосредственно к объектам общественного обслуживания.

- 3.2. На основании исследований и расчетов, произведенных для различных городов, установлено, что в каждом скоплении или комплексе культурно-бытовых учреждений и предприятий их вместимость должна рассчитываться не на одну и ту же численность постоянного населения планировочного элемента, на территории которого находятся эти объекты, а на различную численность населения, тяготеющего к каждому из них, исходя из специфики взаимодействия с различными элементами городской застройки и, в том числе, с окружающими учреждениями и предприятиями каждого из рассматриваемых видов обслуживания. В табл. 6 приведены наиболее встречающиеся вместимости рассматриваемых видов культурно-бытовых учреждений и предприятий.
- **3.3.** Численность людей, непосредственно посещающих учреждения и предприятия общественного обслуживания G_i , может быть определена по формуле:

$$G_{i} = a_{i} \sum_{f=1}^{2} T_{if}, \qquad (17)$$

где \mathbf{a}_i — суммарный коэффициент потребности в передвижениях к рассматриваемому комплексу обслуживания; \mathbf{T}_{if} — численность первоначально тяготеющего населения к рассматриваемому комплексу обслуживания в обеих исходных ситуациях \mathbf{f}_1 и \mathbf{f}_2 .

Шифр вида	Учреждения и предприятия	Единица измерения	Ти	пы уч	режде	ний и	предг	триятий		
обслу-	предприятия	измерения	Общая вместимость							
жива- ния k					F	Вариан	ты			
			A	Б	В	Γ	Д	E	жи	
	Магазины:	2								
k ₁	продовольст-	м торговой	УІ	_	_	I	11	IУ	У	J1I
•	венные	пйотати	6000	_	_	600	700	1500	2000	800
k ₂	непродоволь-	м торговой	УŤ		У	I	11	III	ТУ	II
•	ственные	площади	30000	_	12000	2500	4000	7000	9000	4000
k ₃	Предприятия	1 место	УII	УІ	У_	I	II	Itī	ĬУ	11
J	общественного		6000	5000	2700	600	900	1400	2000	900
	пинатип									
k ₄	Рынки	1 торговое	IY	_	_	I	II	III		П
•		место	1800		_	200	300	460	_	300
k ₅	Дома быта, спе-	производст-	у	_	_	I	II	<u>lit</u>	ГУ	II
•	циализирован-	венные рабо-	1000	=	_	100	140	260	300	140
	ные предприя-	чие и прием-								
	RNT	щики								
k ₈	Предприятия	1 объект	Ţ	Ĭ	1	1	1	I	1	Ţ
Ü	связи		ī	1	1	1	1	1	ī	1
k ₉	Театры, цирки	1 место	<u>III</u>	11		_	=	_	_1_	
			7000	5000	—	_	-	_	4000	-
k 10	Клубы	20	Iy	_	_	1	_	III	_	11
10			11000	_	_	1200	_	3000	_	1600
k 11	Библиотеки	тыс. Книг	_	_	_	Г	_	IJ	19	11
11			_	_	_	300	_	800	1000	400
k 13	Кинотеатры	1 место	ТУ	_	_	Ī	II	ΙτΙ	_	I
13	•		11000	=	_	1100	1600	3000	_	1600
k ₁₄	Аптеки	1 объект	1	İ	I	T	ī	1	I	I
14		-	1	1	1	1	1	1	<u> </u>	1

3.4. Применяя действующие нормы (СНиП 11-60-75^{XX}) можно получить величину необходимой площади территории U под общественные здания, зеленые насаждения или стоянки автомобилей по формуле

$$U = NG_{i}, (18)$$

где N - действующая норма.

Расчет в соответствии с указанной формулой для отдельных комплексов общественного обслуживания, взятых из примера рассмотренного в разделе 3, приведен в табл. 7.

Таблица 7

Комплексы обслужива-	Суммарное тяготеющее	Суммарный Расчетное коэффициент число по-		гные величи вующих нор					
ния і	население, (из распечатки на ЭВМ) 2 \$\sum_{\text{if}} T_{\text{if}}, \text{ чел.}	a, i	сетителей в сутки,чел.	обслу	чреждения живания орме 1,5 м	дения об	ные насаж- щего поль- (при норме чел.)	томоби	оянки ав- плей (при 0,2 м ² на
	f=1 f, som		2 M	га	м2	га	м2	га	
i,	114700	0,373	42800	64200	6,4	128 400	12,8	8560	0,8
i	30000	0,108	32400	48600	4,9	97200	9,7	6480	0,6
i 2 i 3	33100	0,18	5960	8950	0,9	17900	1,7	1190	0,1
i ₄	8900	0,258	2290	3440	0,3	6860	0,7	458	0,05
i ₅	12900	0,337	4250	6380	0,6	12750	1,3	850	0,08
i ₆	8700	0,286	2570	3860	0,4	7700	0,8	514	0,05
i ₇	11300	0,274	3100	4650	0,5	9300	0,9	620	0,06
i ₈ '	11200	0,256	2870	4300	0,4	8600	0,9	574	0,06
i _o	20200	0,276	5600	8400	0,8	16800	1,7	1120	0,1

ПРИМЕР РАСЧЕТА ДЛЯ ГОРОДА НА 1,5 МЛН. ЖИТЕЛЕЙ С ИСПОЛЬЗОВАНИЕМ ЭВМ

Подготовка исходных данных

- 1. Подготовка исходных данных включает составление расчетных схем, обработку предварительных данных и составление таблиц параметров, непосредственно вводимых в расчет на ЭВМ.
- 2. На расчетных схемах, показанных на рис. 8 и 9 для двух ситуаций распределения населения f и f между расчетными зонами его нахождения, нанесены их границы. Каждая расчетная зона обозначена буквой ј с номером, отличающим ее от других зон. Места скопления существующих учреждений, сохраняемых на перспективу, проектируемых комплексов и объектов обслуживания районного и городского значения обозначены на схемах буквой і с различными номерами. Культурно-бытовые связи показаны на схемах стрелками, условно соединяющими расчетные зоны нахождения населения с теми комплексами учреждений и предприятий, посещение которых практически вероятно из каждой рассматриваемой зоны.
- 3. Предварительные данные на расчетный срок и получение исходных параметров, непосредственно вводимых в расчет на ЭВМ показаны в табл. 1—3. В табл. 1 приведена общая структура и численность населения рассматриваемого города, в табл. 2— численность постоянного и дневного населения в различных расчетных зонах для исходных ситуаций распределения населения f_1 и f_2 . В табл. 3 подсчитывается распределение численности приведенного к постоянному населения в расчетных зонах его нахождения H_{if} .

Численность приведенного к постоянному населения для расчетных зон его нахождения в исходных ситуациях \mathbf{f}_1 и \mathbf{f}_2 приводится в табл. 4.

Доля тяготения V ко всем учреждениям и предприятиям, размещаемым в комплексах обслуживания за пределами пешеходной доступности, определяется по п. 2.17: V = 0.373.

Вероятность посещения населением культурно-бытовых учреждений и предприятий, размещаемых в комплексах обслуживания за пределами пешеходной доступности, для каждой из двух исходных ситуаций f_1 и f_2 , определяется по п. 2.18, а именю: $C_f = C_f = 0.5$.

В табл. 5 приведены коэффициенты потребности в передвижениях к видам учреждений, разнесенные в матричной форме по комплексам і, формируемым на расчетный срок (на основании табл. 3 разд. 2).

В табл. 6 приведены коэффициенты вероятности попутных посещений $\mathfrak{t}_{\mathfrak{t}}$ для различ-

Таблица 1

Население	Структура населения,	Численность населения,
	%	тыс. чел.
	В жилой застройке	
Постоянное	100	1500
В том числе работающее:		
в 1-ю смену	46	690
во 2-ю и 3-ю смены	6	90
Несамодеятельное население	45	675
Выезжающее население	3	45
Итого без выезжающего насе-	97	1455
ления		
	Приезжие	
Трудящиеся	2	30
Приезжие с деловыми целями	1	15
Приезжие из агломерации с	4	60
культурно-бытовыми целями		
Итого дневного населения	104	1560

Таблица 2

Застройка	Обозна-			Населен	ие, тыс. чел.		Bcerc	
	чения	Постоянное	Дневное					
,	30H	Q _j				,	П _{jf}	
			работаю- щие в 1-ю смену	жители и работаю- щие во	приезжие с деловыми целями	приезжие с культур- но-бытовы-		
				2-ю и 3-ю смены		ми целями		
		Исх	одная с	итуация	f_1			
Городская,	j,	145	40	74	4	28	146	
с рассредо-	j	145	43	70	-	3	116	
гоченными	j ₂	178	60	91	3	11	165	
местами	j₄	234	90	120	1	6	217	

Застройка	Обозна-			Населени	ие, тыс. чел.		Bcerc
	чения 30н	Постоянное Q		Дневное			П jf
			работаю- щие в 1-ю смену	жители и работаю- щие во 2-ю и 3-ю смены	приезжие с деловыми целями	приезжие с культур- но-бытовы- ми целями	
приложения		138	38	70	1	3	112
труда	j ₆	232	85	120	1	4	210
	j ₇	97	20	50		1	71
	j ₈ '	142	40	70	-	2	112
	j ₉	189	70	100	-	2	172
Производ-	j ₁₀		60	_	2	-	62
ственная	j ₁₁	_	28	_	1	_	29
	j ₁₂	-	10				
	j ₁₃	_	20	_	0,5	-	-
	^j 14	_	16	•••	-		16
	j ₁₅		50	-	1		51
	j ₁₆	-	40	-	0,5		40,5
	j ₁₇		10	****	_		10
Итого		1500	720	765	15	60	1560
		Исхо	одная с	итуация	f_2		
Жилая и	j,	145	_	140	8	28	176
обществен-	j ₂	145	-	141	1	3	145
ная	ją	178	-	173	2	11	186
	j ₄	234	_	227	1	6	234
	i ₅	138	-	134	1	3	138
	j ₆	232	_	225	2	4	231
	¹ 1 ¹ 2 ¹ 3 ¹ 4 ¹ 5 ¹ 6 ¹ 7	97		94	4000	1	95
	j ₈	142		138	-	2	140
	j ₉	189	-	183		2	185

Расчетные	Приток или убыль населения	Приведенное к постоянному население
оны ј	$\Pi_{jf} = \Pi_{jf} - Q_{j}$, rac. ven.	H _{jf} =Q(±) КД _{jf} , тыс. чел.
	Исходная с	ситуация f ₁
i ₁	1,7(146 - 145) = +1,7	145 + 1,7 = 146,7
	1,7(116 - 145) = -49,3	145 - 49,3 = 95,7
¹ 2 ^j 3 ^j 4 ^j 5 ^j 6	1,7(165-178)=-22,1	178 - 22,1 = 155,9
j,	1,7(217 - 234) = -28,9	234 - 28,9 = 205,1
j,	1,7(112-138)=-44,2	138 - 44,2 = 93,8
j _e	1,7(210 - 232) = -37,4	232 - 37,4 = 194,6
j ₇	1,7(71-97)=-44,2	97 - 44,2 = 52,8
i ₈	1,7(112 - 142) = -51	142 - 51,0 = 91
j ₉	1,7(172 - 189) = -28,9	189 - 28,9 = 160,1
j ₁₀	$1,7 \cdot 62 = +105,4$	105,4
j ₁₁	$1,7 \cdot 29 = +49,3$	49,3
j ₁₂	$1,7 \cdot 10 = +17$	17
j ₁₃	$1,7 \cdot 20,5 = +34,8$	34,8
j ₁₄	$1,7 \cdot 16 = +27,2$	27,2
j ₁₅	$1,7 \cdot 51 = +86,7$	86,7
j ₁₆	$1,7 \cdot 10,5 = +68,9$	68,9
j ₁₇	$1,7 \cdot 10 = +17$	17
Итого:		1602
	Исходная с	итуация f ₂
j ₁	1,7 (176 - 145) = +52,7	145 + 52,7 = 197,7
j _a	1,7(145 - 145) = 0	145 + 0 = 145
j ₂	1,7 (186 - 178) = +13,6	178 + 13,6 = 191,6
^j 1 ^j 2 ^j 3 ^j 4 ^j 5 ^j 6 ^j 7	1,7(234 - 234) = 0	234 + 0 = 234
j ₅	$1,7\ (138-138)=0$	138 + 0 = 138
is	1,7 (231 - 232) = -1,7	232 - 1,7 = 230,3
j	1,7(95-97) = -3,4	97 - 3,4 = 93,6
j ₈	1,7 (140 - 142) = -3,4	142 - 3,4 = 138,6
ig	1,7 (185 - 189) = -6,8	189 - 6,8 = 182,2

Таблица 4

Расчетные зоны	Численность приведенного к постоянному населения, тыс. чел. для исходных ситуаций								
j	f ₁	f ₂							
j,	146,7	197,7							
i.	95,7	145							
i _a	155,9	191,6							
*3 i.	205,1	234							
-4 i_	93,8	138							
-5 i.	194,6	230,3							
*6 i_	52,8	93,6							
37 in	91	138,6							
j ₁ j ₂ j ₃ j ₄ j ₅ j ₆ j ₇ j ₈ j ₉ j ₁₀	160,1	182,2							
i	105,4	_							
	49,3	_							
^J 11	17,0	<u></u>							
^J 12	34,8	-							
^J 13	27,2	-							
^J 14	86,7	_							
¹ 15	68,9	-							
^J 16 ^J 17	17	-							
Итого;	1602	1551							

ных видов учреждений k, разнесенные в матричной форме по комплексам i, формируемым на расчетный срок (на основании табл. 6 разд. 2).

В табл. 7 приведены коэффициенты посещаемости учреждений, учитывающие влияние дальности передвижений b. от расчетных зон нахождения населения к учреждениям и предприятиям в комплексах обслуживания (на основании табл. 4 разд. 2). Число передвижений на 1 чел. в год к учреждениям и предприятиям, размещаемым в комплексах обслуживания за пределами 10-минутной доступности и к объектам обслуживания, рассредоточенным в городской застройке в пределах 10-минутной доступности, следует принимать по табл. 2 разд. 1.

ексы		Значения коэффициентов а в комплексах і для учреждений и предприятий по шифрам ki														
бслу- сива- ия і	k ₁	k ₂	k ₃	k ₄	k ₅	k ₆	k ₇	k ₈	k ₉	k ₁₀	k 11	k 12	k ₁₃	k ₁₄	k 15	
<u> </u>	0,087	0,048	0,093	0,014	0,02	0,018	0,016	0,01	0,006	0,012	0,008	0,012	0,018	0,002	0,009	
l 2	_	-	0,093	_	_	_	_	_	0,006	_	_	_	_	_	0,009	
; ;	_	0,048	0,093	_	_	0,018	_	0,01	_	-	-	_	_	0,002	0,009	
	0,087	0,048	0,093	_	_	_	_	0,01	_	_	_	_	0,018	0,002	_	
	0,087	-	0,093	0,014	0,02		0,016	0,01	_	0,012	0,008	_	0,018	0,002	0,009	
	0,087	-	0,093	_	0,02	_	0,016	0,01	_	0,012	0,008	_	_	0,002	_	
		0,048	0,093	0,014	0,02	_	-	0,01	_	_	_	_	_	0,002	_	
1	-	0,048	0,093	_	-	_	_	0,01	_		_	_	0,018	-	_	
.	-	0,048	0,093	_	0,02	_	0,016	0,01	_	_		_	-	0,002	_	
•	•	0,048	0,093	_	-	_	-	0,01			_	_	0,018	0,002		
.0		0,048	0,093	_	0,02		_	0,01	-	-	_		0,010	0,002	0,00	
11		0,048	0,093	0,014		0,018	- 0,016		-	0.012	0,008	-	0,018			
2	=	•	-	·	0,02	0,016	•	0,01	-	0,012		-	•	0,002	0,00	
.3	-	0,048	0,093	-	0,02	_	0,016	0,01	-	0,012	0,008	-	0,018	0,002	0,00	
.4		0,048 0,048	0,093 0,093	-	0,02 0,02	-	0,016	0,01 0,01	-	0,012	0,008	-	0,018	0,002 0,002	-	
15																
5	0,087 0,087	0,048 0,048	0,093 0,093	- 0,014	0,02 0,02	- 0,018	- 0,016	0,01 0,01	-	_	0,008	- 0,012	- 0,018	0,002 0,002	_	
7	0,087	•	0,093	0,014		0,010	0,010	0,01	_	_	_	0,012	0,016		_	
3	0,087	-	0,093	0,014	_ 0.02	_	-		-	-	-	-	_ 0.010	0,002	- 0.00	
1	0,087		0,093	148	0,02	-	0.017	0,01	-	- 0.010	- 000	-	0,018	0,002	0,00	
)	•		0,093	0.014	0,02	- 0.010	0,016	0,01	-	0,012	0,008	-	0,018	0,002	0,00	
	0,087	-		0,014	0,02	0,018	-	0,01	-	-	-	-	0,018	0,002	-	
:	0,087		0,093	-	0,02	-	0,016	0,01	-	0,012	0,008	-	0,018	0,002	-	
}	0,087	-	0,093		_	-		0,01	-	0,012	0,008	-	0,018	0,002	-	
ļ	0,0 87	-	0,093	0,014	0,02	-	0,016	0,01	-	-	-	-	0,018	0,002	-	
:	0,087		0,093	-	0,02	0,018	0,016	0,01	-	-	-	-	0,018	0,002	0,00	
i	0,0 87	0,048	0,093	-	0,02	-	0,016	0,01	-	0,012	0,008	-	-	0,002	0,00	
,	0,087	0,048	0,093	_	0,02	0,018	0,016	0,01	•	0,012	0,008	0,012	0,018	0,002	0,00	
.	0,087	0,048	0,093	-	0,02	-	-	0,01	-	_	-	-	_	0,002	0,00	
, 1	0,087	0,048	0,093	0,014	0,02	0,018	0,016	0,01	-	0,012	0,008	_	0,018	0,002	0,00	

мплек- обслу-		Коэффициент вероятности попутных посещений I, в комплексах і для учреждений и предприятий по шифрам														
в а ния i	k ₁	k ₂	k ₃	k ₄	k ₅	k ₆	k ₇	k ₈	k ₉	k 10	k 11	k 12	k 13	k 14	k 15	
	0,323	0,067	0,254	0,022	0,033	0,023	0,027	0,016	0,008	0,014	0,011	0,015	0,023	0,005	0,014	
	-	-	0,254	-	-	_	_	-	0,008	-	-	-	-		0,014	
		0,067	0,254	_	-	0,023	_	0,016	_	_	-	-	_	0,005	0,014	
	0,323	0,067	0,254		_	-	_	0,016	-	-	_	-	0,023	0,005	-	
	0,323	0,067	0,254	0,022	0,033	_	0,027	0,016	-	0,014	0,011	-	0,023	0,005	~	
	0,323	0,067	0,254	_	0,033	-	0,027	0,016	-	0,014	0,011	-	_	0,005		
	0,323	0,067	0,254	0,022	0,033	_	_	0,016	-	_	-	-	-	0,005	-	
	0,323	0,067	0,254	_		_	_	0,016	_	-	_	-	0,023	-	-	
	0,323	0,067	0,254	***	0,033	-	0,027	0,016	_	_	_	-	_	0,005	-	
0	0,323	0,067	0,254	_	_	_		0,016	-	-	_	-	0,023	0,005	-	
u 1	0,323	0,067	0,254	_	0,033	_		0,016	_	_	_	_	_	0,005	0,014	
	0,323	0,067	0,254	0,022	0,033	0,023	0,027	0,016	_	0,014	0,011	_	0,023	0,005	0,014	
2	0,323	•	-	-	0,033	-	0,027	0,016	-	0,014	0,011	_	0,023	0,005	0,014	
3	•	0,067	0,254	_	0,033	-	0,027	0,016	_	0,014	0,011	_	0,023	0,005		
4	0,323	•	0,254	_	0,033	-	_	0,016	_	_	_	_	_	0,005	·····	
5	•	0,067	0,254	_	0,033	_	_	0,016	_		0,011	_	_	0,005	~	
6 7	•	0,067	-	0,022	-	0,023	0,027	0,016	_	-	-	0,015	0,023	0,005	-	
8	0,323	0,067	0,254	0,022	_	_	_	0,016	_	_	_		-	0,005	-	
.9	0,323	0,067	0,254	-	0,033	_	-	0,016	-	-	_	-	0,023	0,005	0,014	
20	0,323	0,067	0,254	_	0,033	_	0,027	0,016	-	0,014	0,011	-	0,023	0,005	0,014	
:0	0,323	0,067	0,254	0,022	0,033	0,023	_	0,016	_	_	-	_	0,023	0,005	-	
22	0,323	0,067	0,254	_	0,033	-	0,027	0,016		0,014	0,011	_	0,023	0,005	_	
22 23	0,323	0,067	0,254	_	-	_	_	0,016	_	0,014	0,011	-	0,023	0,005	_	
:3 :4	0,323	0,067	0,254	0,022	0,033	-	0,027	0,016	-	-	_	_	0,023	0,005	-	
4 5		0,067		-	0,033	0,023	0,027	0,016	-	-	-	_	0,023	0,005	0,014	
.5 .6		0,067		_	0,033	_	0,027	0,016	_	0,014	0,011	_	_	0,005	0,014	
:6 :7	-	0,067		_	0,033	0,023	0,027	0,016	_	0,014	0,011	0,015	0,023	0,005	0,014	
.7 -		0,067		_	0,033	_	_	0,016	_	_	_	_	_	0,005	0,014	
28	-	-	0,254		-	0,023	0,027	0,016	_	0,014	0,011	_	0,023	0,005	0,014	
29		0,067		-	0,033		-,	0,016	-	-	0,011		0,023	0,005	-	
30	·,023	0,007	U, #10 T		0,000		_	0,010	•	•	٠,٠-١		-,020	0,000		

Papers. Return i 1	j.	Коэффициенты b _. для передвижений к комплексам і от расчетных зон ј																
0,9 0,6 0,8 0,8 0,7 0,8 0,3 0,5 0,5 0,5 0,5 0,5 0,3 0,8 0,6 0,3 0,9 0,8 0,8 0,8 0,7 0,7 0,7 0,5	K-	^j 1	j ₂	j ₃	^j 4	^j 5	j ₆	j ₇	j ₈	j ₉	^j 10	j ₁₁	j ₁₂	^j 13	^j 14	j ₁₅	j ₁₆	j ₁₇
0.9 0.6 0.8 0.8 0.7 0.8 0.3 0.5 <td>.</td> <td>1,0</td> <td>0,6</td> <td>0,6</td> <td>0,6</td> <td>0,6</td> <td>0,8</td> <td>0,4</td> <td>0,7</td> <td>0,6</td> <td>0,5</td> <td>0,6</td> <td>0,4</td> <td>0,3</td> <td>0,8</td> <td>0,7</td> <td>0,4</td> <td>0,5</td>	.	1,0	0,6	0,6	0,6	0,6	0,8	0,4	0,7	0,6	0,5	0,6	0,4	0,3	0,8	0,7	0,4	0,5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														0,3	0,8	0,6	0,3	0,3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0,8	0,8	-	_	_	_	-	0,7	0,7	0,7	0,5	-	-	_	**	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-	_	_	_	_		_	0,9			_	-	-	-	(80)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		***	1	_	-	_	_	_	_	_	0,8	0,8	-	_	wb	0000		
0,9 0,9 0,8 1 1 1 1 1 1 1 1 0,8 1		_		_	_	_	_	***		-			_		electric de la constant de la consta			-
0,9 0,9 0,8 1 1 1 1 1 1 1 1 0,8				1	***	_	_	_	_	_	***		0,8	_	_	-	ca	***
0,9 0,9 0,8 1 1 1 1 1 1 1 1 0,8 1		_	_		_	_		_	-	•	_			_	_		-	
0,9 0,9 0,8 1 1 1 1 1 1 1 1 0,8 1		_	-		0,9			_	_		-			-	ėta.	_	_	485
0,9 0,9 0,8 1 1 1 1 1 1 1 1 0,8 1		-				_	_	_	_	-	_	••	_	_	_	-	-	443
0,9 0,9 0,8 1 1 1 1 1 1 1 1 0,8 1		_	_			_	_	_	-	_	_	eto	-	_	1	-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_	_	_		1		-	_	_	esta	-	_	0.8			****	-
0,9 0,9 0,8 1 1 1 1 1 1 1 1 0,8 1		_	•	_		_		_	_	_	***	_	•				-	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_	_	_		-		_	_	530		_	8 023			_		_
0,9 0,9 0,8 1 1 1 1 1 1 1 1 1 0,8		_	_	_		_			_	-	_	_	me	-	_		_	_
		0,9	-	ecan	-	_		_	_	-	760	-	Chille	_	***	0,8	-	-
		-	-	-	-	-	1	-		-	-	-	-	-	-	1	-	-
1 0,		-	-	***		-	1	-	-	-	-	-	-	_	-	1	-	-
0,9 1		-	-	-		-	1	-	_	-	-	-	-	-	-	1	-	-
1		-			-	-	mo	1	-	-	-	-	-		-	_	0,9	-
1		-	-	-	-	_		0,9	1		-	-	-	-	_	_		0,9
1		_		-	_	-		-	1	-	-	-	-	_	_	_	_	0,9
1			-		_	_	_	-	_	1	-	-	_	_	_	_		
1		-	-	_	_	_	-	-	-	1	0,9	_	-	_	_	_		-
- 1 1 1		_	-	-	_	-	-	_	-	1		-		-		_	_	_
- 1 1 1		_	_	_	-	_	_	_	-	1	0,9	-	_		cabo	_	_	_
1		_	1		_	_	_		-	_		1	_	_	_	-	_	_
		-	unds.	-	_	_	_					-	1	_	_	-		_
		_	_		1		***	_	_			_	_	0.8	_	_	-	_
		_	_	***	_	_		_	1	_	***	-		_	_	_	***	

П. Расчет численности тяготеющего к обслуживанию населения с использованием ЭВМ

- 4. Для расчета численности населения, тяготеющего к центрам обслуживания, была написана программа на языке ФОРТРАН-СТ для ЭВМ ЕС-1022 с операционной системой ОС ЕС. Программа полностью соответствует описанной выше процедуре расчета и не накладывает на методику никаких чисто вычислительных особенностей. Длина программы —74 оператора.
 - 5. В качестве исходных данных для программы требуется следующая информация:

<u>Вектор IB.</u> Содержит информацию о коэффициентах дальности передвижения от ј-й расчетной зоны к i-му центру обслуживания.

Матрица А. Элемент а — коэффициент потребности в передвижениях к культурно-бытовым учреждениям k-го вида, характерным для i-го центра обслуживания.

<u>Матрица L.</u> Элемент $\frac{1}{ik}$ — коэффициент вероятности попутных посещений учреждений k-го вида, расположенных в i-ом центре обслуживания.

<u>Вектор H.</u> Элемент $h_{\hat{1}}$ — численность приведенного населения j-й расчетной зоны в ситуации $f_{\hat{1}}$.

<u>Вектор H1.</u> Элемент h_{2} — численность приведенного населения j-й расчетной зоны в ситуации f_{2} .

ний k-го вида, приходящаяся на учреждения, размещенные в городском или районном центрах обслуживания, в отличие от учреждений, размещаемых в центрах микрорайонов или рассредоточенно в жилой застройке.

6. Результат расчета распечатывается в виде матрицы с нумерованными строками и столбцами, снабженной "шапкой" поясняющего текста. Каждый элемент матрицы — численность населения, тыс. чел., тяготеющего к одному из центров обслуживания в связи с каким-нибуль видом обслуживания.

Объем оперативной памяти ЭВМ для расчета тяготеющего населения в случае крупных городов в основном определяется объемом исходных данных. В частности, для настоящего примера (30 центров обслуживания, 17 расчетных зон нахождения населения для ситуации f_1 и 9 — для ситуации f_2 ; 15 видов обслуживания) потребовалось 37 кбайт. Поскольку в перспективе предстоит решать для более крупных городов задачу еще большей размерности (до 100 центров обслуживания, до 500 расчетных зон нахождения населения), информацию о коэффициентах дальности передвижения пришлось "упаковать" в вектор ІВ, так как в матричном виде (размером 100 х 500 элементов) она заняла бы в оперативной памяти

недопустимо большое место. Предположительный объем оперативной памяти, требуемой программой для 100 центров обслуживания и 500 зон расселения — 130 кбайт.

Чистое время работы программы не превышает десятков секунд.

7. В табл. 8 в соответствии с рис. 8 и 9 приведены результаты расчета на ЭВМ ЕС-1022 численности приведенного к постоянному населения, тяготеющего к учреждениям и предприятиям рассматриваемых видов общественного обслуживания.

Комп-	1				Числе	MIROCTL O	белуживае	иого насе	ления, ты	c. ven.,n	DR RU				
лексы и скоп- пения учреж- дений і	магаз продо- воль- ствен- ных	нях предпро- непро-	пред- прия- тий об- щест- венно- го пи- тания	рынков	домов быта, специ- влизи- рован- ных пред- прия- тий	1	страхив- реждений район- ных	пред- прия- тий связы	цирков ширков	клубов	библи- отек	выста- воч- ных залов	rear- pob	amer	парков, садов, спор- тивных соору- жений
i,	66,2	196,6	146,3	699,7	124,2	635,1	507,7	279,5	863,7	466,7	380,7	1294,1	422,3	86	363,3
i i 2 i 3 i 4 i 5 i 6 i 7	-	••	118,5	-	-	-		-	712,8	-	-	-	-	_	299,6
i a	-	93,8	69,2	_	-	304,3	_	134,1	-	_	-	-	-	41,3	174,2
i d	6,7	19,1	14,5	-	-	_	***	26,9	-	-	~	-	40,6	8,3	-
i ₅	7,5	20,6	16	71,6	12,9	-	52	28,7	-	47,8	38,9	-	43,3	8,8	37,2
i ₆	6,7	19,6	14,6	-	12,3	-	50,2	27,6	-	46,1	37,6	-	-	8,5	-
i ₇	9,5	28,4	21	101,5	18	-	-	40,5	-	-	-	-	-	12,5	-
i 8 i 9	9,3	28	20,7	-	-	-	-	39, 9	-	-	-	-	60,3	-	-
i	17,3	5 2,5	38,5	-	33,3	-	136,6	75,2	_	-	-	-	-	23,2	-
1 ₁₀	17	51,6	37,9	-	-	-		73,9	-	_	-	_	111,6	22,8	-
i11	9,1	27	20,1	-	17,1	-	-	38,4	-	-	-	-	-	11,8	49,9
i 12	16,2	48,9	36,1	174,8	30,9	158,6	126,8	69,8	-	116,6	95,1	-	105,5	21,5	90,8
i 13 i 14	8,6	23	18,1	-	14,4	-	57,8	31,8	-	53	43,2	-	48,	9,	8 41,3
i 14	16,1	47,3	35,3	_	29,9	_	121,9	67,1	-	112,7	91,4	-	101,4	1 20,	7 -
i 15	14	42,3	31	_	26,8	-	-	60,5	-	-	-	_	-	18,	5 -
i 15 i 16	21	62,9	46,4	-	39,8	-		89,9	-	_	112,5		-	27,	7 –
i 17 i 18	8,2	22,9	17,6	80,3	14,4	73	58,3	32,1	-	-	-	148,5	48,6	5 9,	9 -
i 18	7,6	21,4	16,4	75,1	-	-	-	30,1	-	-	-	-		9,	3 –
i 19	7,8	22	16,8	***	13,9	-	-	30,9	-	-	-	-	46,		-
i 20	10,5	28,4	22,2	_	17,8		71,4	39,3	-	65,5	53,4	-	59,	5 12,	1 51,1
i 21	16	49,8	36,1	179,4	31,6	162,8	-	71,6	-	-	-	-		22	_
i 22	8,5	25,8	18,9	-	16,3	-	67	36,9	-	61,6	50,3	-	55,	7 11,	4 –
i 23	8,2	24,8	18,3	_	-	-	-	35,5	-	59,3	48,4	-		5 10,	
i 24	9,3	26,1	19,9	91,4	16,4	-	66,4	36,6	-	_	-	-	55,	3 11,	3 –
i 25	8,5	25,8	19		16,3	83,7	66,9	36,8	-	_	-	-	55,0		3 47,9
i 20 i 21 i 22 i 22 i 23 i 24 i 25 i 26	9,2	26	19,9	-	16,6	-	66,2	36,5	-	60,8	49,6	-		11,	
i 27	7,9	21,1	16,6	-	13,2	65,9	52,8	29,1	-	48,4	39,5	134	44	8,	9 37 ,7
i 27 i 28 i 29 i 30	0,2	0,2	0,4	-	0,1		-	-		-	-	-	-	-	-
i 29	9,9	29	21,7	102,6	18,3	93,1	74,5	41	-	68,4	55,8	_		9 12,	
3	8	25	18,1		15,9			36		_	49,2			4. 11,	1 –

СОДЕРЖАНИЕ

Предисловие	3
1. Пространственно-связевая система размещения учреждений и предприя-	
тий общественного обслуживания	7
2. Модель перераспределения и расчета численности тяготеющего к обслу-	
живанию населения	16
3. Применение расчета пространственно-связевой системы размещения	1
учреждений и предприятий общественного обслуживания	30
Приложение. Пример расчета для города на 1,5 млн жителей с использова-	
нием ЭВМ	33
Т. Подготовка исходных данных	33
II. Расчет численности тяготеющего к обслуживанию населения с ис-	
пользованием ЭВМ	44

Нормативно-производственное издание

ЦНИИЭП учебных зданий Госкомархитектуры

Рекомендации по расчету и размещению учреждений системы общественного обслуживания с учетом культурно-бытовых связей в городе

Редактор Н.В.Лосева
Мл. редактор Л.Р.Абелева
Технический редактор Н.Е. Цветкова
Корректор С.А. Зудилина
Оператор Т.А. Портянова
Н/К

Подписано в печать 23.06.89. Формат 60 х 84⁴/16. Бумага офсетная №2. Печать офсетная. Усл. печ. л. 2,79. Усл.кр.-отт. 3,04 Уч.-изд. л. 2,79 Тираж 5600 экз. Изд. №XII-3072. Заказ № 2598 Цена 15 коп.

Стройиздат. 101442, Москва, Каляевская, 23 а

Московская типография №9 НПО "Всесоюзная книжная палата" Госкомиздата СССР 109033, Москва, Волочаевская ул., 40